已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且=cosA+cosB,則△ABC的形狀為( 。A.等腰三角形 | B.直角三角形 | C.等邊三角形 | D.不能確定 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,AH為BC邊上有高,以下結(jié)論:①
•(-)=0;②
•<0?△ABC為銳角三角形③
•=csinB④
•(-)=b
2+c
2-2bccosA,其中正確的個(gè)數(shù)是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,
ccosA=且△ABC的面積S≥2,
(1)求A的取值范圍;
(2)求函數(shù)
f(A)=cos2+sin2(+)-的最值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,a=2,c=3,∠B=60°,則b=( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
=cosA+cosB,則△ABC的形狀為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b
2=a
2+c
2-ac,b=1.
(1)若
tanA-tanC=(1+tanAtanC),求c;
(2)若a=2c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
sinB-cosB=1.
(Ⅰ)若
A=,b=1,求c;
(Ⅱ)若a=2c,求A.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,BC邊上的高為2a,則
++的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
sinB-cosB=1,b=1.
(Ⅰ)若
A=,求c;
(Ⅱ)若a=2c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,AH為BC邊上的高,以下結(jié)論:①
•(-)=0;
②
•<0⇒△ABC為鈍角三角形;
③
•=csinB;
④
•(-)=a2,其中正確的個(gè)數(shù)是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c.
(1)證明:
>;
(2)證明:不論x取何值總有b
2x
2+(b
2+c
2-a
2)x+c
2>0;
(3)若a>c≥2,證明:
-<.
查看答案和解析>>