精英家教網 > 高中數學 > 題目詳情
函數f(x)是定義域為R的偶函數,又是以2為周期的周期函數、若f(x)在[-1,0]上是減函數,那么f(x)在[2,3]上是( 。
A.增函數B.減函數
C.先增后減的函數D.先減后增的函數
相關習題

科目:高中數學 來源:2012-2013學年廣東省河源市龍川一中高一(上)12月月考數學試卷(解析版) 題型:解答題

函數f(x)是定義域為R的偶函數,且對任意的x∈R,均有f(x+2)=f(x)成立.當x∈[0,1]時,f(x)=loga(2-x)(a>1).
(1)當x∈[2k-1,2k+1](k∈Z)時,求f(x)的表達式;
(2)若f(x)的最大值為,解關于x的不等式

查看答案和解析>>

科目:高中數學 來源:2005-2006學年湖北省“鄂南高中、華師一附中、黃岡中學、黃石二中、荊州中學、襄樊四中、襄樊五中、孝感高中”八校高三第一次聯(lián)考數學試卷(理科)(解析版) 題型:解答題

函數f(x)是定義域為R的偶函數,且對任意的x∈R,均有f(x+2)=f(x)成立.當x∈[0,1]時,f(x)=loga(2-x)(a>1).
(1)當x∈[2k-1,2k+1](k∈Z)時,求f(x)的表達式;
(2)若f(x)的最大值為,解關于x的不等式

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數f(x)是定義域為R的偶函數,且對任意的x∈R,均有f(x+2)=f(x)成立.當x∈[0,1]時,f(x)=loga(2-x)(a>1).
(1)當x∈[2k-1,2k+1](k∈Z)時,求f(x)的表達式;
(2)若f(x)的最大值為數學公式,解關于x的不等式數學公式

查看答案和解析>>

科目:高中數學 來源:咸安區(qū)模擬 題型:解答題

函數f(x)是定義域為R的偶函數,且對任意的x∈R,均有f(x+2)=f(x)成立.當x∈[0,1]時,f(x)=loga(2-x)(a>1).
(1)當x∈[2k-1,2k+1](k∈Z)時,求f(x)的表達式;
(2)若f(x)的最大值為
1
2
,解關于x的不等式f(x)>
1
4

查看答案和解析>>

科目:高中數學 來源:2007年廣東省深圳市高考數學一模試卷(理科)(解析版) 題型:選擇題

函數f(x)是定義域為R的偶函數,又是以2為周期的周期函數、若f(x)在[-1,0]上是減函數,那么f(x)在[2,3]上是( )
A.增函數
B.減函數
C.先增后減的函數
D.先減后增的函數

查看答案和解析>>

科目:高中數學 來源:2011年浙江省杭州市宏升高復學校高考數學一模試卷(文科)(解析版) 題型:選擇題

函數f(x)是定義域為R的偶函數,又是以2為周期的周期函數、若f(x)在[-1,0]上是減函數,那么f(x)在[2,3]上是( )
A.增函數
B.減函數
C.先增后減的函數
D.先減后增的函數

查看答案和解析>>

科目:高中數學 來源:2006年高考第一輪復習數學:2.4 函數的奇偶性(解析版) 題型:選擇題

函數f(x)是定義域為R的偶函數,又是以2為周期的周期函數、若f(x)在[-1,0]上是減函數,那么f(x)在[2,3]上是( )
A.增函數
B.減函數
C.先增后減的函數
D.先減后增的函數

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

函數f(x)是定義域為R的偶函數,又是以2為周期的周期函數、若f(x)在[-1,0]上是減函數,那么f(x)在[2,3]上是


  1. A.
    增函數
  2. B.
    減函數
  3. C.
    先增后減的函數
  4. D.
    先減后增的函數

查看答案和解析>>

科目:高中數學 來源: 題型:013

函數fx)是定義域為R的偶函數,又是以2為周期的周期函數,若fx)在[1,0]上是減函數,那么fx)在[2,3]上是(   

  A.增函數

  B.減函數

  C.先增后減的函數

  D.先減后增的函數

 

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:013

函數fx)是定義域為R的偶函數,又是以2為周期的周期函數,若fx)在[1,0]上是減函數,那么fx)在[2,3]上是(   

  A.增函數

  B.減函數

  C.先增后減的函數

  D.先減后增的函數

 

查看答案和解析>>


同步練習冊答案