已知點(diǎn)P(3,0)及圓C:x2+y2-8x-2y+12=0,過(guò)P的最短弦所在的直線方程為( 。
A.x+2y+3=0B.x-2y+3=0C.x+y-3=0D.2x+y-3=0
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(3,0)及圓C:x2+y2-8x-2y+12=0,過(guò)P的最短弦所在的直線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P(3,0)及圓C:x2+y2-8x-2y+12=0,過(guò)P的最短弦所在的直線方程為( 。
A.x+2y+3=0B.x-2y+3=0C.x+y-3=0D.2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第4章 圓與方程》2012年單元測(cè)試卷(理科)(珠海四中)(解析版) 題型:選擇題

已知點(diǎn)P(3,0)及圓C:x2+y2-8x-2y+12=0,過(guò)P的最短弦所在的直線方程為( )
A.x+2y+3=0
B.x-2y+3=0
C.x+y-3=0
D.2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第4章 圓與方程》2012年單元測(cè)試卷(理科)(珠海四中)(解析版) 題型:選擇題

已知點(diǎn)P(3,0)及圓C:x2+y2-8x-2y+12=0,過(guò)P的最短弦所在的直線方程為( )
A.x+2y+3=0
B.x-2y+3=0
C.x+y-3=0
D.2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知點(diǎn)P(3,0)及圓C:x2+y2-8x-2y+12=0,過(guò)P的最短弦所在的直線方程為


  1. A.
    x+2y+3=0
  2. B.
    x-2y+3=0
  3. C.
    x+y-3=0
  4. D.
    2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(3,2)及圓C:x2+y2-2x+2y-2=0.
(1)過(guò)P向圓C作切線,切點(diǎn)為A,B(A在B的左邊),求切線的方程;
(2)求切線長(zhǎng)|PA|,并求∠APB的正切;
(3)求直線AB的方程;
(4)求四邊形ACBP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0113 期中題 題型:解答題

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0。
(1)若直線l過(guò)點(diǎn)P且與圓心C的距離為1,求直線l的方程;
(2)設(shè)過(guò)點(diǎn)P的直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以線段MN為直徑的圓Q的方程;
(3)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:天津期中題 題型:解答題

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0。
(1)若直線l過(guò)點(diǎn)P且與圓心C的距離為1,求直線l的方程;
(2)設(shè)過(guò)點(diǎn)P的直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以線段MN為直徑的圓Q的方程;
(3)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省佛山一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P(3,2)及圓C:x2+y2-2x+2y-2=0.
(1)過(guò)P向圓C作切線,切點(diǎn)為A,B(A在B的左邊),求切線的方程;
(2)求切線長(zhǎng)|PA|,并求∠APB的正切;
(3)求直線AB的方程;
(4)求四邊形ACBP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2+x-6y+3=0和直線l:x+2y+m=0交于P,Q兩點(diǎn),且OP⊥OQ
(O為坐標(biāo)原點(diǎn)),求:
(Ⅰ)圓C的圓心坐標(biāo)與半徑;
(Ⅱ)m的值及直線l在y軸上的截距.

查看答案和解析>>


同步練習(xí)冊(cè)答案