3
4
-2、(
6
5
2、(
7
6
0三個數(shù)中,最大的是( 。
A.(
3
4
-2
B.(
6
5
2
C.(
7
6
0
D.無法確定
A
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

3
4
-2、(
6
5
2、(
7
6
0三個數(shù)中,最大的是(  )
A.(
3
4
-2
B.(
6
5
2
C.(
7
6
0
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省期中題 題型:單選題

﹣2、(2、(0三個數(shù)中,最大的是
[     ]
A.(﹣2
B.(2
C.(0
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:單選題

﹣2、(2、(0三個數(shù)中,最大的是
[     ]
A.(﹣2
B.(2
C.(0
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形,設(shè)格點(diǎn)多邊形各邊上的格點(diǎn)的個數(shù)和為a,格點(diǎn)邊多邊形內(nèi)部的格點(diǎn)個數(shù)和為b,格點(diǎn)多邊形的面積為S,圖l、圖2是兩個格點(diǎn)多邊形.
(1)根據(jù)圖中提供的信息填表:
一般格點(diǎn)多邊形 a b a+2b S
多邊形1(圖1) 6 1
 
 
多邊形2(圖2) 7 2 11
 
(2)在給定的正三角形網(wǎng)格中分別畫出一個面積為3、4、5的格點(diǎn)多邊形:
(3)猜想S與a、b之間的關(guān)系:S=
 
(用含a、b的代數(shù)式表示);
(4)若一個格點(diǎn)多邊形的面積為S,b是否存在最大值和最小值?若存在求出最大值和最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,有A、B、C三種不同型號的卡片,每種卡片各有k張.其中A型卡片是邊長為a的正方形,B型卡片是長為b、寬為a的長方形,C型卡片是邊長為b的正方形.從其中取若干張卡片,每種卡片至少取一張,把取出的這些卡片拼成一個正方形(所拼的圖中既不能有縫隙,也不能有重合部分).
嘗試操作:若k=10,請選取適當(dāng)?shù)目ㄆ闯梢粋邊長為(2a+b)的正方形,畫出示意圖.
思考解釋:若k=20,
①共取出50張卡片,取出的這些卡片能否拼成一個正方形?請簡要說明理由;
②可以拼成______種不同的正方形.
拓展應(yīng)用:上述A、B、C型的卡片各若干張(足夠多),已知:a=2b,現(xiàn)共取出2500張卡片,拼成一個正方形,求可以拼成的正方形中面積最大值.(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下列材料:
已知三個數(shù)a、b、c,我們可以用M(a,b,c)表示這三個數(shù)的平均數(shù),用max(a,b,c)表示這三個數(shù)中最大的數(shù).
例如:M(-2,1,5)=數(shù)學(xué)公式; max(-2,1,5)=5;max(-2,1,a)=數(shù)學(xué)公式
解決下列問題:
(1)填空:①M(fèi)(-3,-2,10)=______;
②max(tan30°,sin45°,cos60°)=______;
③如果max(2,2-2a,2a-4)=2,那么a的取值范圍是______;
(2)如果M(2,a+1,2a)=max(2,a+1,2a),求a的值;
(3)請你根據(jù)(2)的結(jié)果,繼續(xù)探究:如果M(a,b,c)=max(a,b,c),那么______(填a、b、c的大小關(guān)系),并證明你的結(jié)論;
(4)運(yùn)用(3)的結(jié)論填空:
如果M(2a+b+2,a+2b,2a-b)=max(2a+b+2,a+2b,2a-b),那么a+b=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年山東省青島市平度市平東開發(fā)區(qū)實(shí)驗(yàn)中學(xué)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下列材料:
已知三個數(shù)a、b、c,我們可以用M(a,b,c)表示這三個數(shù)的平均數(shù),用max(a,b,c)表示這三個數(shù)中最大的數(shù).
例如:M(-2,1,5)=; max(-2,1,5)=5;max(-2,1,a)=
解決下列問題:
(1)填空:①M(fèi)(-3,-2,10)=______;
②max(tan30°,sin45°,cos60°)=______;
③如果max(2,2-2a,2a-4)=2,那么a的取值范圍是______;
(2)如果M(2,a+1,2a)=max(2,a+1,2a),求a的值;
(3)請你根據(jù)(2)的結(jié)果,繼續(xù)探究:如果M(a,b,c)=max(a,b,c),那么______(填a、b、c的大小關(guān)系),并證明你的結(jié)論;
(4)運(yùn)用(3)的結(jié)論填空:
如果M(2a+b+2,a+2b,2a-b)=max(2a+b+2,a+2b,2a-b),那么a+b=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
已知三個數(shù)a、b、c,我們可以用M(a,b,c)表示這三個數(shù)的平均數(shù),用max(a,b,c)表示這三個數(shù)中最大的數(shù).
例如:M(-2,1,5)=
-2+1+5
3
=
4
3
; max(-2,1,5)=5;max(-2,1,a)=
a(a≥1)
1(a<1)

解決下列問題:
(1)填空:①M(fèi)(-3,-2,10)=
 

②max(tan30°,sin45°,cos60°)=
 
;
③如果max(2,2-2a,2a-4)=2,那么a的取值范圍是
 
;
(2)如果M(2,a+1,2a)=max(2,a+1,2a),求a的值;
(3)請你根據(jù)(2)的結(jié)果,繼續(xù)探究:如果M(a,b,c)=max(a,b,c),那么
 
(填a、b、c的大小關(guān)系),并證明你的結(jié)論;
(4)運(yùn)用(3)的結(jié)論填空:
如果M(2a+b+2,a+2b,2a-b)=max(2a+b+2,a+2b,2a-b),那么a+b=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料:
已知三個數(shù)a、b、c,我們可以用M(a,b,c)表示這三個數(shù)的平均數(shù),用max(a,b,c)表示這三個數(shù)中最大的數(shù).
例如:M(-2,1,5)=
-2+1+5
3
=
4
3
; max(-2,1,5)=5;max(-2,1,a)=
a(a≥1)
1(a<1)

解決下列問題:
(1)填空:①M(fèi)(-3,-2,10)=______;
②max(tan30°,sin45°,cos60°)=______;
③如果max(2,2-2a,2a-4)=2,那么a的取值范圍是______;
(2)如果M(2,a+1,2a)=max(2,a+1,2a),求a的值;
(3)請你根據(jù)(2)的結(jié)果,繼續(xù)探究:如果M(a,b,c)=max(a,b,c),那么______(填a、b、c的大小關(guān)系),并證明你的結(jié)論;
(4)運(yùn)用(3)的結(jié)論填空:
如果M(2a+b+2,a+2b,2a-b)=max(2a+b+2,a+2b,2a-b),那么a+b=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鼓樓區(qū)二模)如圖,有A、B、C三種不同型號的卡片,每種卡片各有k張.其中A型卡片是邊長為a的正方形,B型卡片是長為b、寬為a的長方形,C型卡片是邊長為b的正方形.從其中取若干張卡片,每種卡片至少取一張,把取出的這些卡片拼成一個正方形(所拼的圖中既不能有縫隙,也不能有重合部分).
嘗試操作:若k=10,請選取適當(dāng)?shù)目ㄆ闯梢粋邊長為(2a+b)的正方形,畫出示意圖.
思考解釋:若k=20,
①共取出50張卡片,取出的這些卡片能否拼成一個正方形?請簡要說明理由;
②可以拼成
13
13
種不同的正方形.
拓展應(yīng)用:上述A、B、C型的卡片各若干張(足夠多),已知:a=2b,現(xiàn)共取出2500張卡片,拼成一個正方形,求可以拼成的正方形中面積最大值.(用含a的代數(shù)式表示).

查看答案和解析>>


同步練習(xí)冊答案