2.已知全集,則為
A. B. C.
1.www.tesoon.com
(?)設(shè)AM的方程為x=xy+1,代入=1得(3t2+4)y2+6ty-9=0.
設(shè)A(x1,y1),M(x2,y2),則有:y1+y2=
|y1-y2|=
令3t2+4=λ(λ≥4),則
|y1-y2|=
因?yàn)棣恕?,0<
|y1-y2|有最大值3,此時(shí)AM過(guò)點(diǎn)F.
△AMN的面積S△AMN=
解法二:
(Ⅰ)問(wèn)解法一:
(Ⅱ)(?)由題意得F(1,0),N(4,0).
設(shè)A(m,n),則B(m,-n)(n≠0), ……①
AF與BN的方程分別為:n(x-1)-(m-1)y=0, ……②
n(x-4)-(m-4)y=0, ……③
由②,③得:當(dāng)≠. ……④
由④代入①,得=1(y≠0).
當(dāng)x=時(shí),由②,③得:
解得與a≠0矛盾.
所以點(diǎn)M的軌跡方程為即點(diǎn)M恒在錐圓C上.
(Ⅱ)同解法一.
n(x-4)-(m-4)y=0.
x0=.
所以點(diǎn)M恒在橢圓G上.
設(shè)A(m,n),則B(m,-n)(n≠0),=1. ……①
AF與BN的方程分別為:n(x-1)-(m-1)y=0,
令f′(x)=0得x=0或x=2.
當(dāng)x變化時(shí),f′(x)、f(x)的變化情況如下表:
X
(-∞.0)
0
(0,2)
2
(2,+ ∞)
f′(x)
+
0
-
0
+
f(x)
極大值
極小值
由此可得:
當(dāng)0<a<1時(shí),f(x)在(a-1,a+1)內(nèi)有極大值f(O)=-2,無(wú)極小值;
當(dāng)a=1時(shí),f(x)在(a-1,a+1)內(nèi)無(wú)極值;
當(dāng)1<a<3時(shí),f(x)在(a-1,a+1)內(nèi)有極小值f(2)=-6,無(wú)極大值;
當(dāng)a≥3時(shí),f(x)在(a-1,a+1)內(nèi)無(wú)極值.
綜上得:當(dāng)0<a<1時(shí),f(x)有極大值-2,無(wú)極小值,當(dāng)1<a<3時(shí),f(x)有極小值-6,無(wú)極大值;當(dāng)a=1或a≥3時(shí),f(x)無(wú)極值.
(22)(本小題滿(mǎn)分14分)
如圖,橢圓(a>b>0)的一個(gè)焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動(dòng)弦,直線(xiàn)l:x=4與x軸交于點(diǎn)N,直線(xiàn)AF與BN交于點(diǎn)M.
(?)求證:點(diǎn)M恒在橢圓C上;
(?)求△AMN面積的最大值.
解:)本小題主要考查直線(xiàn)與橢圓的位置關(guān)系、軌跡方程、不等式等基本知識(shí),考查運(yùn)算能力和綜合解題能力。
解法一:
(Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,
所以橢圓C前方程為.
(Ⅱ)(i)由題意得F(1,0),N(4,0).
代入①得n=0.
于是f′(x)=3x2-6x=3x(x-2).
由f′(x)>得x>2或x<0,
故f(x)的單調(diào)遞增區(qū)間是(-∞,0),(2,+∞);
由f′(x)<0得0<x<2,
故f(x)的單調(diào)遞減區(qū)間是(0,2).
(Ⅱ)由(Ⅰ)得f′(x)=3x(x-2),
==2n-1.
因?yàn)閎n?bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2
=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)
=-5?2n+4?2n
=-2n<0,
所以bn?bn+2<b,
解法二:
(Ⅰ)同解法一.
(Ⅱ)因?yàn)閎2=1,
bn?bn+2- b=(bn+1-2n)(bn+1+2n+1)- b
=2n+1?bn-1-2n?bn+1-2n?2n+1
=2n(bn+1-2n+1)
=2n(bn+2n-2n+1)
=2n(bn-2n)
=…
=2n(b1-2)
=-2n〈0,
所以bn-bn+2<b2n+1
(21)(本小題滿(mǎn)分12分)
已知函數(shù)的圖象過(guò)點(diǎn)(-1,-6),且函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng).
(Ⅰ)求m、n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0,求函數(shù)y=f(x)在區(qū)間(a-1,a+1)內(nèi)的極值.
解:(21)本小題主要考察函數(shù)的奇偶性、單調(diào)性、極值、導(dǎo)數(shù)、不等式等基礎(chǔ)知識(shí),考查運(yùn)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法,以及分類(lèi)與整合、轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,考查分析問(wèn)題和解決問(wèn)題的能力.滿(mǎn)分12分.
解:(1)由函數(shù)f(x)圖象過(guò)點(diǎn)(-1,-6),得m-n=-3, ……①
由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,
則g(x)=f′(x)+6x=3x2+(2m+6)x+n;
而g(x)圖象關(guān)于y軸對(duì)稱(chēng),所以-=0,所以m=-3,
(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以數(shù)列{an}是以1為首項(xiàng),公差為1的等差數(shù)列.
故an=1+(a-1)×1=n.
(Ⅱ)由(Ⅰ)知:an=n從而bn+1-bn=2n.
bn=(bn-bn-1)+(bn-1-bn-2)+???+(b2-b1)+b1
=2n-1+2n-2+???+2+1
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com