17.(2008山東泰安)某市種植某種綠色蔬菜,全部用來(lái)出口.為了擴(kuò)大出口規(guī)模,該市決定對(duì)這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植一畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)(畝)與補(bǔ)貼數(shù)額(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額的不斷增大,出口量也不斷增加,但每畝蔬菜的收益(元)會(huì)相應(yīng)降低,且與之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)和每畝蔬菜的收益與政府補(bǔ)貼數(shù)額之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額定為多少?并求出總收益的最大值.
16.(2)(2008山東泰安)用配方法解方程:.
15. (2008 河南實(shí)驗(yàn)區(qū))已知是關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根,且--=115
(1)求k的值;(2)求++8的值。
14. (2008 廣東)(1)解方程求出兩個(gè)解、,并計(jì)算兩個(gè)解的和與積,填人下表
方程 |
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
關(guān)于x的方程 (、、為常數(shù), 且) |
|
|
|
|
(2)觀察表格中方程兩個(gè)解的和、兩個(gè)解的積與原方程的系數(shù)之間的關(guān)系有什么規(guī)律?寫(xiě)出你的結(jié)論.
13.(2008泰安) 用配方法解方程:.
12.(08廈門(mén)市)某商店購(gòu)進(jìn)一種商品,單價(jià)30元.試銷(xiāo)中發(fā)現(xiàn)這種商品每天的銷(xiāo)售量(件)與每件的銷(xiāo)售價(jià)(元)滿足關(guān)系:.若商店每天銷(xiāo)售這種商品要獲得200元的利潤(rùn),那么每件商品的售價(jià)應(yīng)定為多少元?每天要售出這種商品多少件?
11.(2008北京)已知:關(guān)于的一元二次方程.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為,(其中).若是關(guān)于的函數(shù),且,求這個(gè)函數(shù)的解析式;
(3)在(2)的條件下,結(jié)合函數(shù)的圖象回答:當(dāng)自變量的取值范圍滿足什么條件時(shí),.
10.(2008湖北鄂州)設(shè)是關(guān)于的一元二次方程的兩實(shí)根,當(dāng)為何值時(shí),有最小值?最小值是多少?
9.(2008江蘇南京)某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長(zhǎng)與寬的比為2:1,在溫室內(nèi),沿前側(cè)的側(cè)內(nèi)墻保留3m寬的空地.其它三側(cè)內(nèi)墻各保留1m寬的通道,當(dāng)矩形溫室的長(zhǎng)與寬各為多少時(shí),蔬菜種植區(qū)域的面積是288m2?
8. (2008 湖北 十堰)如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
⑴怎樣圍才能使矩形場(chǎng)地的面積為750m2?
⑵能否使所圍矩形場(chǎng)地的面積為810m2,為什么?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com