q:橢圓的一條準線方程是. 查看更多

 

題目列表(包括答案和解析)

橢圓C1的焦點在x軸上,中心是坐標原點O,且與橢圓C2
x2
12
+
y2
4
=1
的離心率相同,長軸長是C2長軸長的一半.A(3,1)為C2上一點,OA交C1于P點,P關于x軸的對稱點為Q點,過A作C2的兩條互相垂直的動弦AB,AC,分別交C2于B,C兩點,如圖.

(1)求橢圓C1的標準方程;
(2)求Q點坐標;
(3)求證:B,Q,C三點共線.

查看答案和解析>>

橢圓C1的焦點在x軸上,中心是坐標原點O,且與橢圓C2
x2
12
+
y2
4
=1
的離心率相同,長軸長是C2長軸長的一半.A(3,1)為C2上一點,OA交C1于P點,P關于x軸的對稱點為Q點,過A作C2的兩條互相垂直的動弦AB,AC,分別交C2于B,C兩點,如圖.

(1)求橢圓C1的標準方程;
(2)求Q點坐標;
(3)求證:B,Q,C三點共線.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上的一動點P到右焦點的最短距離為2-
2
,且右焦點到右準線的距離等于短半軸的長.
(1)求橢圓C的方程;
(2)設P(4,0),A,B是橢圓C上關于x軸對稱的任意兩個不同的點,連接PB交橢圓C于另一點E,證明直線AE與x軸相交于定點Q;
(3)在(2)的條件下,過點Q的直線與橢圓C交于M,N兩點,求
OM
ON
的取值范圍.

查看答案和解析>>

已知橢圓C=1(ab>0),F1、F2分別為橢圓C的左、右焦點,A1、A2分別為橢圓C的左、右頂點,過右焦點F2且垂直于x軸的直線與橢圓C在第一象限的交點為M(,2).

(1)求橢圓C的標準方程;

(2)直線lxmy+1與橢圓C交于P、Q兩點,直線A1PA2Q交于點S.試問:當直線l變化時,點S是否恒在一條定直線上?若是,請寫出這條定直線的方程,并證明你的結(jié)論:若不是,請說明理由.

查看答案和解析>>

精英家教網(wǎng)已知以原點O為中心的橢圓的一條準線方程為y=
4
3
3
,離心率e=
3
2
,M是橢圓上的動點
(Ⅰ)若C,D的坐標分別是(0,-
3
),(0,
3
)
,求|MC|•|MD|的最大值;
(Ⅱ)如題(20)圖,點A的坐標為(1,0),B是圓x2+y2=1上的點,N是點M在x軸上的射影,點Q滿足條件:
OQ
=
OM
+
ON
,
QA
BA
=0
、求線段QB的中點P的軌跡方程.

查看答案和解析>>

第Ⅰ卷

、選擇題

題號

1

2

3

4

5

6

7

8

答案

B

B

B

A

C

A

D

C

 

第Ⅱ卷

填空題

9、3 , ;    10、;     11、(A); (B);(C)();    12、0.5       13、28 ,

、解答題

14、(本小題滿分12分)

解:(Ⅰ)

                       =+

                       =+

  所以,的最小正周期 

(Ⅱ)

    

由三角函數(shù)圖象知:

的取值范圍是

 

 

 

 

15、(本小題滿分12分)

方法一:

證:(Ⅰ)在Rt△BAD中,AD=2,BD=,

AB=2,ABCD為正方形,

因此BDAC.                    

PA⊥平面ABCDBDÌ平面ABCD,

BDPA .                      

又∵PAAC=A

BD⊥平面PAC.                 

解:(Ⅱ)由PA⊥面ABCD,知AD為PD在平面ABCD的射影,又CDAD

CDPD,知∠PDA為二面角PCDB的平面角.                      

又∵PA=AD

∴∠PDA=450 .                                                       

(Ⅲ)∵PA=AB=AD=2

PB=PD=BD=

C到面PBD的距離為d,由

,                              

,

         

方法二:

證:(Ⅰ)建立如圖所示的直角坐標系,

A(0,0,0)、D(0,2,0)、P(0,0,2).

在Rt△BAD中,AD=2,BD=,

AB=2.

B(2,0,0)、C(2,2,0),

  

BDAP,BDAC,又APAC=A

BD⊥平面PAC.                       

解:(Ⅱ)由(Ⅰ)得.

設平面PCD的法向量為,則

,∴

故平面PCD的法向量可取為                              

PA⊥平面ABCD,∴為平面ABCD的法向量.             

設二面角P―CD―B的大小為q,依題意可得,

q = 450 .                                                      

(Ⅲ)由(Ⅰ)得

設平面PBD的法向量為,則,

,∴x=y=z

故平面PBD的法向量可取為.                             

C到面PBD的距離為                          

 

 

16、(本小題滿分14分)

解:(1)設“甲射擊4次,至少1次未擊中目標”為事件A,則其對立事件為“4次均擊中目標”,則

(2)設“甲恰好擊中目標2次且乙恰好擊中目標3次”為事件B,則

(3)設“乙恰好射擊5次后,被中止射擊”為事件C,由于乙恰好射擊5次后被中止射擊,故必然是最后兩次未擊中目標,第三次擊中目標,第一次及第二次至多有一次未擊中目標。

 

17、(本小題滿分14分)

解:(Ⅰ)由  得

可得

因為,所以   解得,因而

 (Ⅱ)因為是首項、公比的等比數(shù)列,故

則數(shù)列的前n項和

前兩式相減,得 

   即 

 

 

18、(本小題滿分14分)

解:(1) ,設切點為,則曲線在點P的切線的斜率,由題意知有解,

.

 (2)若函數(shù)可以在時取得極值,

有兩個解,且滿足.

易得.

(3)由(2),得.

根據(jù)題意,()恒成立.

∵函數(shù))在時有極大值(用求導的方法),

且在端點處的值為.

∴函數(shù))的最大值為.  

所以.

 

19、(本小題滿分14分)

解:(1)∵成等比數(shù)列 ∴ 

是橢圓上任意一點,依橢圓的定義得

 

為所求的橢圓方程.

(2)假設存在,因與直線相交,不可能垂直

因此可設的方程為:

  ①

方程①有兩個不等的實數(shù)根

、

設兩個交點、的坐標分別為 ∴

∵線段恰被直線平分 ∴

 ∴ ③ 把③代入②得

  ∴ ∴解得

∴直線的傾斜角范圍為

 

 

 


同步練習冊答案