(2)求使得函數(shù)是“類函數(shù) 的常數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

若函數(shù)y=f(x)(x∈D)同時(shí)滿足以下條件:
①它在定義域D上是單調(diào)函數(shù);②存在區(qū)間[a,b]?D使得f(x)在[a,b]上的值域也是[a,b],我們將這樣的函數(shù)稱作“A類函數(shù)”,
(1)函數(shù)y=2x-log2x是不是“A類函數(shù)”?如果是,試找出[a,b];如果不是,試說明理由;
(2)求使得函數(shù)f(x)=
1
2
x-
k
x
+1,x∈(0,+∞)是“A類函數(shù)”的常數(shù)k的取值范圍.

查看答案和解析>>

已知函數(shù)

(Ⅰ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;

(Ⅱ)令g(x)= f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;

(Ⅲ)當(dāng)x∈(0,e]時(shí),證明:

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問中利用函數(shù)f(x)在[1,2]上是減函數(shù),的導(dǎo)函數(shù)恒小于等于零,然后分離參數(shù)求解得到a的取值范圍。第二問中,

假設(shè)存在實(shí)數(shù)a,使有最小值3,利用,對a分類討論,進(jìn)行求解得到a的值。

第三問中,

因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120293445381201_ST.files/image006.png">,這樣利用單調(diào)性證明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)見解析

 

查看答案和解析>>

(A類)定義在R上的函數(shù)y=f(x),對任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時(shí),有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類)已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)定義:若存在一個(gè)非零常數(shù)T,使得f(x+T)=f(x)對定義域中的任何實(shí)數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

(A類)定義在R上的函數(shù)y=f(x),對任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時(shí),有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
(B類)已知定義在R上的奇函數(shù)f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)定義:若存在一個(gè)非零常數(shù)T,使得f(x+T)=f(x)對定義域中的任何實(shí)數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

 

一、填空題

1.   2.    3.2   4.  5. i100   6.  7. 2

8.    9.   10.   11.   12.

二、選擇題

13.   14.A  15.A.  16. D

三、解答題

17.

   (1)由題意可得:=5----------------------------------------------------------(2分)

由:  得:=314---------------------------------------(4分)

或:,

   (2)方法一:由:------(1分)

        或---------(1分)

得:0.0110-----------------------------------------------------------------(1分)

方法二:由:

得:-----------------------------------------------------------------(1分)

由:點(diǎn)和點(diǎn)的縱坐標(biāo)相等,可得點(diǎn)和點(diǎn)關(guān)于點(diǎn)對稱

即:------------------------------------------------------------(1分)

得:0.011-----------------------------------------------------------------------(1分)

 

 

 

18.(1),是等腰三角形,

的中點(diǎn),,--------------(1分)

底面.----(2分)

-------------------------------(1分)

于是平面.----------------------(1分)

   (2)過,連接----------------(1分)

平面,

,-----------------------------------(1分)

平面,---------------------------(1分)

就是直線與平面所成角。---(2分)

中,

----------------------------------(2分)

所以,直線與平面所成角--------(1分)

19.解:

   (1)函數(shù)的定義域?yàn)?sub>;------------------------------------(1分)

當(dāng)時(shí);當(dāng)時(shí);--------------------------------------------------(1分)

所以,函數(shù)在定義域上不是單調(diào)函數(shù),------------------(1分)

所以它不是“類函數(shù)” ------------------------------------------------------------------(1分)

   (2)當(dāng)小于0時(shí),則函數(shù)不構(gòu)成單調(diào)函數(shù);(1分)

當(dāng)=0時(shí),則函數(shù)單調(diào)遞增,

但在上不存在定義域是值域也是的區(qū)間---------------(1分)

當(dāng)大于0時(shí),函數(shù)在定義域里單調(diào)遞增,----(1分)

要使函數(shù)是“類函數(shù)”,

即存在兩個(gè)不相等的常數(shù) ,

使得同時(shí)成立,------------------------------------(1分)

即關(guān)于的方程有兩個(gè)不相等的實(shí)根,--------------------------------(2分)

,--------------------------------------------------------------------------(1分)

亦即直線與曲線上有兩個(gè)不同的交點(diǎn),-(1分)

所以,-------------------------------------------------------------------------------(2分)

20.解:

   (1)

,由,得數(shù)列構(gòu)成等比數(shù)列------------------(3分)

,,數(shù)列不構(gòu)成等比數(shù)列--------------------------------------(1分)

   (2)由,得:-------------------------------------(1分)

---------------------------------------------------------(1分)

----------------------------------------------(1分)

----(1分)

------------------------------------------------------------------(1分)

---------------------------------------------------------------------(1分)

   (3)若對任意,不等式恒成立,

即:

-------------------------------------------(1分)

令:,當(dāng)時(shí),有最大值為0---------------(1分)

令:

------------------------------------------------------(1分)

當(dāng)時(shí)

---------------------------------------------------------(1分)

所以,數(shù)列從第二項(xiàng)起單調(diào)遞減

當(dāng)時(shí),取得最大值為1-------------------------------(1分)

所以,當(dāng)時(shí),不等式恒成立---------(1分)

21. 解:

   (1)雙曲線焦點(diǎn)坐標(biāo)為,漸近線方程---(2分)

雙曲線焦點(diǎn)坐標(biāo),漸近線方程----(2分)

   (2)

得方程: -------------------------------------------(1分)

設(shè)直線分別與雙曲線的交點(diǎn)、  的坐標(biāo)分別為,線段 中點(diǎn)為坐標(biāo)為

----------------------------------------------------------(1分)

得方程: ----------------------------------------(1分)

設(shè)直線分別與雙曲線的交點(diǎn)、  的坐標(biāo)分別為,線段 中點(diǎn)為坐標(biāo)為

---------------------------------------------------(1分)

,-----------------------------------------------------------(1分)

所以,線段不相等------------------------------------(1分)

   (3)

若直線斜率不存在,交點(diǎn)總個(gè)數(shù)為4;-------------------------(1分)

若直線斜率存在,設(shè)斜率為,直線方程為

直線與雙曲線

    得方程:   ①

直線與雙曲線

     得方程:    ②-----------(1分)

 

的取值

直線與雙曲線右支的交點(diǎn)個(gè)數(shù)

直線與雙曲線右支的交點(diǎn)個(gè)數(shù)

交點(diǎn)總個(gè)數(shù)

1個(gè)(交點(diǎn)

1個(gè)(交點(diǎn)

2個(gè)

1個(gè)(,

1個(gè)(,

2個(gè)

1個(gè)(與漸進(jìn)線平行)

1個(gè)(理由同上)

2個(gè)

2個(gè)(,方程①兩根都大于2)

1個(gè)(理由同上)

3個(gè)

2個(gè)(理由同上)

1個(gè)(與漸進(jìn)線平行)

3個(gè)

2個(gè)(理由同上)

2個(gè)(,方程②

兩根都大于1)

4個(gè)

得:-------------------------------------------------------------------(3分)

由雙曲線的對稱性可得:

的取值

交點(diǎn)總個(gè)數(shù)

2個(gè)

2個(gè)

3個(gè)

3個(gè)

4個(gè)

得:-------------------------------------------------------------------(2分)

綜上所述:(1)若直線斜率不存在,交點(diǎn)總個(gè)數(shù)為4;

   (2)若直線斜率存在,當(dāng)時(shí),交點(diǎn)總個(gè)數(shù)為2個(gè);當(dāng) 時(shí),交點(diǎn)總個(gè)數(shù)為3個(gè);當(dāng)時(shí),交點(diǎn)總個(gè)數(shù)為4個(gè);---------------(1分)

 

 

 


同步練習(xí)冊答案