16. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題:   1.B  2.B  3.D  4.C  5.C  6.C  7.D  8.A  9.C  10.B

二、填空題:  11.  12.  13.  14.  15.1

三、解答題:

16.解: (Ⅰ)解:,        (1分)

           (3分)

                                   (4分)

       (6分)                 

(Ⅱ)解:                (7分)

       由      得   (8分)

           由         得          (9分)

            (11分)

                                             (12分)

 17解: 設(shè)矩形溫室的左側(cè)邊長為am,后側(cè)邊長為bm,則ab=800m2.         (2分)

∴蔬菜的種植面積,  (5分)

,

,                                          (7分)

(m2),                                    (9分)

當(dāng)且僅當(dāng),即時, m2.              (11分)

答:當(dāng)矩形溫室的左側(cè)邊長為40m,后側(cè)邊長為20m時,蔬菜的種植面積最大,最大種植面積為648 m2.                                                     (12分)

18解:(Ⅰ)證明:

        ∴,則 (2分)

,則

     (4分)

   (Ⅱ)證明:依題意可知:中點

*   則,而

      ∴中點   (6分)

       在中,

           (8分)

(Ⅲ)解:

        ∴,而

        ∴  ∴   (10分)

        中點

        ∴中點  ∴

       

        ∴

        ∴中,

         ∴    (12分)

     ∴   (14分)

19解: 圓C化成標(biāo)準(zhǔn)方程為:    (2分)

假設(shè)存在以AB為直徑的圓M,圓心M的坐標(biāo)為(a,b)

由于、   (5分)

直線的方程為        (6分)

        (7分)

即:    、             (10分)

由①②得:                          (11分)

當(dāng)       (12分)

當(dāng)      (13分)

故這樣的直線l 是存在的,方程為x-y+4=0或x-y+1=0.       (14分)

20解: 解(Ⅰ) al0=10,  a20=10+10d=40,   ∴d=3            (2分)

(Ⅱ) a30= a20+10d=10(1+d+d2)  (d≠0)                 (4分)

a30=10[(d+)2+],

當(dāng)d∈(-∞, 0)∪(0, +∞)時, a30∈[,+∞].              (7分)

(Ⅲ) 續(xù)寫數(shù)列: 數(shù)列a30,a31,…,a40是公差為d4的等差數(shù)列   (8分)

一般地,可推廣為:無窮數(shù)列{ an},其中al,a2…,a10是首項為1公差為1的等差數(shù)列,

當(dāng)n≥1時, 數(shù)列a10n,a10n+1,…,a10(n+1)是公差為dn的等差數(shù)列.        (9分)

研究的問題可以是:試寫出a10(n+1)關(guān)于d的關(guān)系式,并求a10(n+1)的取值范圍   (11分)

研究的結(jié)論可以是: 由a40= a30+10d3=10(1+d+d2+ d3),

依次類推可得  a10(n+1)= 10(1+d+d2+…+ dn)=    10?(d≠1),

                                          10(n+1)      (d=1)

當(dāng)d>0時, a10(n+1)的取值范圍為(10, +∞)等                         (14分)

21解:(Ⅰ)由過點P且以P(1,-2)為切點的直線的斜率

*所求直線方程:  (3分)

   (Ⅱ)設(shè)過P(1,-2)的直線l切于另一點

知:

即:

故所求直線的斜率為:

         (8分)

   (Ⅲ)由(Ⅱ)可知

上單調(diào)遞增, (11分)

為兩極值點,在時,

上單調(diào)遞增,

        (14分)

 


同步練習(xí)冊答案