(Ⅱ)橢圓上一動點關于直線的對稱點為,求的取值范圍. 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓E:的離心率是,P1、P2是橢圓E的長軸的兩個端點(P2位于P1右側),點F是橢圓E的右焦點.點Q是x軸上位于P2右側的一點,且滿足
(Ⅰ) 求橢圓E的方程以及點Q的坐標;
(Ⅱ) 過點Q的動直線l交橢圓E于A、B兩點,連結AF并延長交橢圓于點C,連結BF并延長交橢圓于點D.
①求證:B、C關于x軸對稱;
②當四邊形ABCD的面積取得最大值時,求直線l的方程.

查看答案和解析>>

已知橢圓
x2
a2
+
y2
b2
=1(a>b>o)
的左焦點為F(-
2
,0),離心率e=
2
2
,M、N是橢圓上的動點.
(Ⅰ)求橢圓標準方程;
(Ⅱ)設動點P滿足:
OP
=
OM
+2
ON
,直線OM與ON的斜率之積為-
1
2
,問:是否存在定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值?,若存在,求出F1,F(xiàn)2的坐標,若不存在,說明理由.
(Ⅲ)若M在第一象限,且點M,N關于原點對稱,點M在x軸上的射影為A,連接NA 并延長交橢圓于點B,證明:MN⊥MB.

查看答案和解析>>

已知曲線上動點到定點與定直線的距離之比為常數

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標得到

第二問當斜率k不存在時,檢驗得不符合要求;

當直線l的斜率為k時,;,化簡得

第三問點N與點M關于X軸對稱,設,, 不妨設

由于點M在橢圓C上,所以

由已知,則

,

由于,故當時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

(本小題滿分12分)
如圖,點是橢圓上一動點,點是點軸上的射影,坐標平面內動點滿足:為坐標原點),設動點的軌跡為曲線

(Ⅰ)求曲線的方程并畫出草圖;
(Ⅱ)過右焦點的直線交曲線,兩點,且,點關于軸的對稱點為,求直線的方程.

查看答案和解析>>

(本小題滿分12分)
如圖,點是橢圓上一動點,點是點軸上的射影,坐標平面內動點滿足:為坐標原點),設動點的軌跡為曲線

(Ⅰ)求曲線的方程并畫出草圖;
(Ⅱ)過右焦點的直線交曲線,兩點,且,點關于軸的對稱點為,求直線的方程.

查看答案和解析>>

 

一、選擇題

AACCD   BBDDD   AC

二、填空題

13.    14.T13    15.①⑤    16.

三、解答題

17.解:(Ⅰ)因為

由正弦定理,得,              ……3分

整理,得

因為、、的三內角,所以,    

因此  .                                                 ……6分

   (Ⅱ),即,                ……8分

由余弦定理,得,所以,      ……10分

解方程組,得 .                       ……12分

18.(本題滿分12分)

解法一:記的比賽為,

  (Ⅰ)齊王與田忌賽馬,有如下六種情況:

,,

, ,

, .  ………………………3分

  其中田忌獲勝的只有一種,所以田忌獲勝的概率為

   …………………………………………………………………………………………6分

(Ⅱ)已知齊王第一場必出上等馬,若田忌第一場出上等馬或中等馬,則剩下兩場中至少輸掉一場,這時田忌必。

為了使自己獲勝的概率最大,田忌第一場應出下等馬,后兩場有兩種情形:

①若齊王第二場派出中等馬,可能對陣情形是、

或者,所以田忌獲勝的概率為; ………………………9分

②若齊王第二場派出下等馬,可能對陣情形是

或者、,所以田忌獲勝的概率為

所以田忌按或者的順序出馬,才能使自己獲勝的概率達到最大值

   ………………………………………………………………………………………12分

解法二:各種對陣情況列成下列表格:

 

 

1

2

3

4

5

6

                            ………………………3分

(Ⅰ)其中田忌獲勝的只有第五種這一種情形,所以田忌獲勝的概率為.……6分

(Ⅱ)為了使自己獲勝的概率最大,田忌第一場應出下等馬,即只能是第五、第六兩種情形.  …………………………………………………9分

其中田忌獲勝的只有第五種這一種情形,所以田忌按或者的順序出馬,才能使自己獲勝的概率達到最大值.………………………12分

19.(本題滿分12分)

解證: (Ⅰ) 連結連結,

∵四邊形是矩形 

中點

中點,從而 ------------3分

平面,平面

∥平面。-----------------------5分

(Ⅱ)(方法1)

三角形的面積-------------------8分

到平面的距離為的高 

---------------------------------11分

因此,三棱錐的體積為。------------------------------------12分

(方法2)

,

為等腰,取底邊的中點

,

的面積 -----------8分

,∴點到平面的距離等于到平面

的距離,

由于,,

,則就是到平面的距離,

,----------11

---------------------12分

(方法3)

到平面的距離為的高 

∴四棱錐的體積------------------------9分

三棱錐的體積

  ∴---------------------------------------------11分

       因此,三棱錐的體積為。-------------------------------------12分

20.(Ⅰ)依題意知,                                                     

,

.                                        

∴所求橢圓的方程為.                     ……4分              

(Ⅱ)設點關于直線的對稱點為,

                           ……6分                 

解得:.                 ……8分               

.                                ……10分           

∵ 點在橢圓:上,

, 則

的取值范圍為.                      ……12分

21.解:(Ⅰ)由知,定義域為,

.     ……………………3分

時,,                    ………………4分

時, .                            ………………5分

所以的單調增區(qū)間是,

的單調減區(qū)間是.           …………………… ………………6分

(Ⅱ)由(Ⅰ)知,上單調遞增,

上單調遞減,在上單調遞增,且當時,

, 所以的極大值為

極小值為.   ………………………8分

又因為, 

,  ………10分

所以在的三個單調區(qū)間上,

直線的圖象各有一個交點,

當且僅當, 因此,

的取值范圍為.   ………………12分

22.解:(Ⅰ)當時,  ……………………………3分

       ∴=

      =

      =

      =  …………………………………7分

       (Ⅱ)  

  +

+

=

= ……………13分

當且僅當,即時,最。14分

 


同步練習冊答案