(II)記處取得極值.求滿足條件的t的個數(shù), 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax-在x=0處取得極值.
(I)求實數(shù)a的值,并判斷,f(x)在[0,+∞)上的單調性;
(Ⅱ)若數(shù)列{an}滿足a1=1,an+1=f(an),求證:0<an+1<an≤l;
(Ⅲ)在(II)的條件.下,記sn=++…+,求證:sn<1.

查看答案和解析>>

已知函數(shù)f(x)=ax-
ln(1+x)
1+x
在x=0處取得極值.
(I)求實數(shù)a的值,并判斷,f(x)在[0,+∞)上的單調性;
(Ⅱ)若數(shù)列{an}滿足a1=1,an+1=f(an),求證:0<an+1<an≤l;
(Ⅲ)在(II)的條件.下,記sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求證:sn<1.

查看答案和解析>>

(2009•濰坊二模)已知函數(shù)f(x)=ax-
ln(1+x)
1+x
在x=0處取得極值.
(I)求實數(shù)a的值,并判斷,f(x)在[0,+∞)上的單調性;
(Ⅱ)若數(shù)列{an}滿足a1=1,an+1=f(an),求證:0<an+1<an≤l;
(Ⅲ)在(II)的條件.下,記sn=
a1
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,求證:sn<1.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

    <legend id="pyv4z"><form id="pyv4z"></form></legend>
    <td id="pyv4z"></td>
    <track id="pyv4z"></track>
    <ul id="pyv4z"></ul>
      <pre id="pyv4z"></pre>

             又平面BDF,

             平面BDF。       2分

         (Ⅱ)解:設異面直線CM與FD所成角的大小為

            

            

            

             即異面直線CM與FD所成角的大小為   3分

         (III)解:平面ADF,

             平面ADF的法向量為      1分

             設平面BDF的法向量為

             由

                  1分

            

                1分

             由圖可知二面角A―DF―B的大小為   1分

      19.解:(I)設該小組中有n個女生,根據(jù)題意,得

            

             解得n=6,n=4(舍去)

             該小組中有6個女生。        6分

         (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

             即通過測試的人數(shù)為3人或2人。

             記甲、乙、丙通過測試分別為事件A、B、C,則

            

                  6分

      20.解:(I)的等差中項,

                   1分

             。

                   2分

                      1分

         (Ⅱ)

                     2分

            

                3分

             ,   

             當且僅當時等號成立。

            

      21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

                     3分

                  1分

         (II)由題意,設

             由     1分

                  3分

         (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關于原點對稱。

             而   

             1分

             點O到直線的距離   1分

                    1分

                   1分

      22.解:(I)當t=1時,   1分

             當變化時,的變化情況如下表:

            

      (-1,1)

      1

      (1,2)

      0

      +

      極小值

             由上表,可知當    2分

                  1分

         (Ⅱ)

            

             顯然的根。    1分

             為使處取得極值,必須成立。

             即有    2分

            

             的個數(shù)是2。

         (III)當時,若恒成立,

             即   1分

            

             ①當時,

             ,

             上單調遞增。

            

            

             解得    1分

             ②當時,令

             得(負值舍去)。

         (i)若時,

             上單調遞減。

            

            

                 1分

         (ii)若

             時,

             當

             上單調遞增,

            

             要使,則

            

                  2分

         (注:可證上恒為負數(shù)。)

             綜上所述,t的取值范圍是。        1分

       


      同步練習冊答案