題目列表(包括答案和解析)
請考生在第22、23、24題中任選一題做答,如果多做,則按所
做的第一題記分.做答時,用2B鉛筆在答題卡上把所選題目對應(yīng)的[來源:學(xué)科網(wǎng)ZXXK]
題號涂黑.
22.選修4-1:幾何證明選講
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE??BF=BC??BD
23.選修4-4:坐標(biāo)系與參數(shù)方程
在拋物線y2=4a(x+a)(a>0),設(shè)有過原點O作一直線分別
交拋物線于A、B兩點,如圖所示,試求|OA|??|OB|的最小值。
24.選修4—5;不等式選講
設(shè)|a|<1,函數(shù)f(x)=ax2+x-a(-1≤x≤1),證明:|f(x)|≤
請考生在第22、23、24題中任選一題做答,如果多做,則按所
做的第一題記分.做答時,用2B鉛筆在答題卡上把所選題目對應(yīng)的
題號涂黑.
22.選修4-1:幾何證明選講
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE??BF=BC??BD
23.選修4-4:坐標(biāo)系與參數(shù)方程
在拋物線y2=4a(x+a)(a>0),設(shè)有過原點作一直線分別
交拋物線于A、B兩點,如圖所示,試求|OA|??|OB|的最小值。
24.選修4—5;不等式選講
設(shè)|a|<1,函數(shù)f(x)=ax2+x-a(-1≤x≤1),證明:|f(x)|≤[
請考生在第(22)、(23)、(24)三題中任選一題作答,如果多做,則按所做的第一題記分。做答時用2B鉛筆在答題卡上把所選題目的題號涂黑。
(22)(本小題滿分10分)選修4-1:幾何證明選講
如圖,已經(jīng)⊙O和⊙M相交于A、B兩點,AD為⊙M的直徑,直線BD交⊙O于點C,點G為弧BD中點,連結(jié)AG分別交⊙O、BD于點E、F,連結(jié)CE.
(Ⅰ) 求證:AG·EF=CE·GD;
(Ⅱ) 求證:
請考生在第(22)、(23)、(24)三題中任選一題作答,如果多做,則按所做的第一題記分。做答時用2B鉛筆在答題卡上把所選題目的題號涂黑。
(22)(本小題滿分10分)選修4-1:幾何證明選講
如圖,在直徑是AB的半圓上有兩個不同的點M、N,設(shè)AN與BM的交點是P.
求證:.
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
B
A
C
A
B
D
B
D
C
A
C
二、填空題
13.30° 14. 15.-0.61 16.
三、解答題
17.解:(I)
即中出現(xiàn)3個1,2個0 2分
所以 6分
(II)(法一)設(shè)Y=X-1,
由題知 9分
所以 12分
(法二)X的分布列如下:
X
1
2
3
4
P(X)
X
5
6
P(X)
……10服
所以…………12分
18.解:(I)由三視圖可得,三棱錐A―BCD中
都等于90°,
每個面都是直角三角形;
可得面ADB,所以……2分
又,所以面ABC,
所以DEAC, 4分
又DFAC,所以AC面DEF。 6分
(II)方法一:由(I)知為二面角B―AC―D的平面角, 9分
|