題目列表(包括答案和解析)
(本題滿分12分)閱讀下列材料,解決數(shù)學(xué)問題.圓錐曲線具有非常漂亮的光學(xué)性質(zhì),被人們廣泛地應(yīng)用于各種設(shè)計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學(xué)性質(zhì),從雙曲線的一個焦點發(fā)出的光線,經(jīng)過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如圖(1)所示.反比例函數(shù)的圖像是以直線為軸,以坐標(biāo)軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點坐標(biāo);
(Ⅱ)如圖(2),從曲線C的焦點F處發(fā)出的光線經(jīng)雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(1) (2)
解析:本例主要是培養(yǎng)學(xué)生理解概念的程度,了解解決數(shù)學(xué)問題都需要算法
算法一:按照逐一相加的程序進行.
第一步 計算1+2,得到3;
第二步 將第一步中的運算結(jié)果3與3相加,得到6;
第三步 將第二步中的運算結(jié)果6與4相加,得到10;
第四步 將第三步中的運算結(jié)果10與5相加,得到15;
第五步 將第四步中的運算結(jié)果15與6相加,得到21;
第六步 將第五步中的運算結(jié)果21與7相加,得到28.
算法二:可以運用公式1+2+3+…+n=直接計算.
第一步 取n=7;
第二步 計算;
第三步 輸出運算結(jié)果.
(本題滿分12分)閱讀下列材料,解決數(shù)學(xué)問題.
圓錐曲線具有非常漂亮的光學(xué)性質(zhì),被人們廣泛地應(yīng)用于各種設(shè)計之中,比如橢圓鏡面用來制作電影放映機的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學(xué)性質(zhì),從雙曲線的一個焦點發(fā)出的光線,經(jīng)過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個焦點射出的一樣,如右上圖所示.
反比例函數(shù)的圖像是以直線為軸,以坐標(biāo)軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點坐標(biāo);
(Ⅱ)如右下圖,從曲線C的焦點F處發(fā)出的光線經(jīng)雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(本小題滿分14分)
Monte-Carlo方法在解決數(shù)學(xué)問題中有廣泛的應(yīng)用。下面是利用Monte-Carlo方法來計算定積分?紤]定積分,這時等于由曲線,軸,所圍成的區(qū)域M的面積,為求它的值,我們在M外作一個邊長為1正方形OABC。設(shè)想在正方形OABC內(nèi)隨機投擲個點,若個點中有個點落入中,則的面積的估計值為,此即為定積分的估計值I。向正方形中隨機投擲10000個點,有個點落入?yún)^(qū)域M
(1)若=2099,計算I的值,并以實際值比較誤差是否在5%以內(nèi)
(2)求的數(shù)學(xué)期望
(3)用以上方法求定積分,求I與實際值之差在區(qū)間(—0.01,0.01)的概率
附表:
n | 1899 | 1900 | 1901 | 2099 | 2100 | 2101 |
P(n) | 0.0058 | 0.0062 | 0.0067 | 0.9933 | 0.9938 | 0.9942 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com