解:不等式的“極限 即方程.則只需驗證x=2.2.5.和3哪個為方程的根.逐一代入.選C. 查看更多

 

題目列表(包括答案和解析)

閱讀不等式5x≥4x+1的解法:
解:由5x≥4x+1,兩邊同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,顯然函數(shù)f(x)=(
4
5
x+(
1
5
x在R上為單調(diào)減函數(shù),
f(1)=
4
5
+
1
5
=1
,故當(dāng)x>1時,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集為{x|x≥1}.
利用解此不等式的方法解決以下問題:
(1)解不等式:9x>5x+4x;
(2)證明:方程5x+12x=13x有唯一解,并求出該解.

查看答案和解析>>

對于問題:“若關(guān)于的不等式的解集為,解關(guān)于的不等式”,給出如下一種解法:

解:不等式的解集為,得的解集為,即關(guān)于的不等式的解集為

參考上述解法:若關(guān)于的不等式的解集為,則關(guān)于的不等式的解集為___________

查看答案和解析>>

(理)已知一列非零向量a n,n∈N*,滿足:a1=(10,-5), a n=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1)(n≥2),其中k是非零常數(shù).

(1)求數(shù)列{| a n|}的通項公式;

(2)求向量a n-1a n的夾角(n≥2);

(3)當(dāng)k=時,把a 1, a 2,…, a n,…中所有與a 1共線的向量按原來的順序排成一列,記為b1,b2,…,bn,…,令OBn=b1+b2+…+bn,O為坐標(biāo)原點,求點列{Bn}的極限點B的坐標(biāo).〔注:若點坐標(biāo)為(tn,sn),且tn=t,sn=s,則稱點B(t,s)為點列的極限點〕

(文)設(shè)函數(shù)f(x)=5x-6,g(x)=f(x).

(1)解不等式g(n)[g(1)+g(2)+…+g(n)]<0(n∈N*);

(2)求h(n)=g(n)[g(1)+g(2)+…+g(n)]-132n(n∈N*)的最小值.

查看答案和解析>>

解關(guān)于x的不等式log(x2+2)(3x2-2x-4)>log(x2+2)(x2-3x+2)

查看答案和解析>>

已知函數(shù)f(x)=x2+(a+1)x+a.
(1)若f(x)<0在區(qū)間(1,2)上恒成立,求a的取值范圍;
(2)解關(guān)于x的不等式 f(x)>0.

查看答案和解析>>


同步練習(xí)冊答案