2.選擇題主要考查基礎(chǔ)知識的理解.基本技能的熟練.基本計算的準(zhǔn)確.基本方法的運用.考慮問題的嚴謹.解題速度的快捷等方面. 解答選擇題的基本策略是:要充分利用題設(shè)和選擇支兩方面提供的信息作出判斷.一般說來.能定性判斷的.就不再使用復(fù)雜的定量計算,能使用特殊值判斷的.就不必采用常規(guī)解法,能使用間接法解的.就不必采用直接解,對于明顯可以否定的選擇應(yīng)及早排除.以縮小選擇的范圍,對于具有多種解題思路的.宜選最簡解法等.解題時應(yīng)仔細審題.深入分析.正確推演.謹防疏漏,初選后認真檢驗.確保準(zhǔn)確. 查看更多

 

題目列表(包括答案和解析)

中,內(nèi)角A,B,C所對的分別是a,b,c。已知a=2,c=,cosA=.

(I)求sinC和b的值;

(II)求的值。

【考點定位】本小題主要考查同角三角函數(shù)的基本關(guān)系、二倍角的正弦與余弦公式、兩角和余弦公式以及正弦定理、余弦定理等基礎(chǔ)知識,考查基本運算求解能力.

 

查看答案和解析>>

已知函數(shù)其中a>0.

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;

(III)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。

【考點定位】本小題主要考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,函數(shù)的最值等基礎(chǔ)知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.

 

查看答案和解析>>

已知橢圓(a>b>0),點在橢圓上。

(I)求橢圓的離心率。

(II)設(shè)A為橢圓的右頂點,O為坐標(biāo)原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

已知是等差數(shù)列,其前n項和為, 是等比數(shù)列,且 

(I)求數(shù)列的通項公式;

(II)記求證:,。

【考點定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和公式、數(shù)列求和等基礎(chǔ)知識.考查化歸與轉(zhuǎn)化的思想方法.考查運算能力、推理論證能力.

 

查看答案和解析>>

(本小題滿分13分)

已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點。

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點,且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。

查看答案和解析>>


同步練習(xí)冊答案