∴=.( ).∴AB// .( )∴∠DGA+∠BAC=180°.( ) 查看更多

 

題目列表(包括答案和解析)

如圖,圓O的半徑為6,點(diǎn)A、B、C在圓O上,且∠ACB=45°,則弦AB的長(zhǎng)是

 

A.            B.6             C.           D.5

 

查看答案和解析>>

如圖,在直角梯形ABCD中,∠A=90°,∠B=120°,ADAB=6.在底邊AB上有一動(dòng)點(diǎn)E,滿足∠DEQ=120°,EQ交射線DC于點(diǎn)F

(1)求下底DC的長(zhǎng)度;

(2)當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),求線段DF的長(zhǎng)度;

(3)請(qǐng)計(jì)算射線EF經(jīng)過(guò)點(diǎn)C時(shí),AE的長(zhǎng)度.

 

查看答案和解析>>

在課外小組活動(dòng)時(shí),小偉拿來(lái)一道題(原問(wèn)題)和小熊、小強(qiáng)交流.

原問(wèn)題:如圖1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過(guò)點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過(guò)推理使問(wèn)題得解.小熊同學(xué)說(shuō):我做過(guò)一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強(qiáng)同學(xué)經(jīng)過(guò)合情推理,提出一個(gè)猜想,我們可以把問(wèn)題推廣到一般情況.請(qǐng)你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問(wèn)題:

1.寫出原問(wèn)題中DF與EF的數(shù)量關(guān)系

2.如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問(wèn)題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請(qǐng)寫出你的猜想并加以證明;

3.如圖3,若∠ADB=∠BEC=2∠ABC,原問(wèn)題中的其他條件不變,你在(1)中

得到的結(jié)論是否發(fā)生變化?請(qǐng)寫出你的猜想并加以證明

 

查看答案和解析>>

如圖所示△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)若AD=5,BD=12,求DE的長(zhǎng).

 

查看答案和解析>>

如圖,⊙O直徑AB垂直于弦CD,垂足EOB的中點(diǎn),CD6cm,則直徑AB???? cm

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案