24.如圖1.正方形ABCD和正方形QMNP. M是正方形ABCD的對稱中心.MN交AB于F.QM交AD于E. 查看更多

 

題目列表(包括答案和解析)

(2011•臨川區(qū)模擬)問題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.
問題探究:
(1)①如圖1所示,當(dāng)G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點(diǎn)C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
(2)若將原題中的“正方形”改為“矩形”(如圖4所示),且
AB
BC
=
CE
CG
=k(其中k>0),請直接寫出線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷.
拓展應(yīng)用:
(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

(2010•邢臺二模)規(guī)律:
如圖1,直線m∥n,A、B為直線n上的點(diǎn),C、P為直線m上的點(diǎn).如果A、B、C為三個定點(diǎn),點(diǎn)P在m上移動,那么無論點(diǎn)P移動到何位置,△ABP與△ABC的面積總相等,其理由是
同底等高的兩個三角形面積相等
同底等高的兩個三角形面積相等

應(yīng)用:
(1)如圖2,△ABC和△DCE都是等邊三角形,若△ABC的邊長為1,則△BAE的面積是
3
4
3
4

(2)如圖3,四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長為4,求△ACF的面積.
(3)如圖4,五邊形ABCDE和五邊形BFGHP都是正五邊形,若正五邊形ABCDE的邊長為a,求△ACH的面積(結(jié)果不求近似值).

查看答案和解析>>

如圖,直角梯形ABCD和正方形EFGC的邊BC、CG在同一條直線上,AD∥BC,AB⊥BC于點(diǎn)B,AD=4,AB=6,BC=8,直角梯形ABCD的面積與正方形EFGC的面積相等,將直角梯形ABCD沿BG向右平行移動,當(dāng)點(diǎn)C與點(diǎn)G重合時停止移動.設(shè)梯形與正方形重疊部分的面積為S.
(1)求正方形的邊長;
(2)設(shè)直角梯形ABCD的頂點(diǎn)C向右移動的距離為x,求S與x的函數(shù)關(guān)系式;
(3)當(dāng)直角梯形ABCD向右移動時,它與正方形EFGC的重疊部分面積S能否等精英家教網(wǎng)于直角梯形ABCD面積的一半?若能,請求出此時運(yùn)動的距離x的值;若不能,請說明理由.

查看答案和解析>>

題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.

問題探究:

1.(1)①如圖1所示,當(dāng)G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)

②將圖1中的正方形CEFG繞著點(diǎn)C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.

類比研究:

2.(2)若將原題中的“正方形”改為“矩形”(如圖所示),且=k(其中k>0),請寫出  線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷(僅證數(shù)量關(guān)系).

拓展應(yīng)用:

3.(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

 

查看答案和解析>>

題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.

問題探究:
【小題1】(1)①如圖1所示,當(dāng)G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點(diǎn)C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
【小題2】(2)若將原題中的“正方形”改為“矩形”(如圖所示),且=k(其中k>0),請寫出 線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷(僅證數(shù)量關(guān)系).
拓展應(yīng)用:
【小題3】(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>


同步練習(xí)冊答案