甲.乙兩個(gè)人射擊.甲射擊一次中靶概率是p1.乙射擊一次中靶概率是p2.已知.是方程x2-5x+6=0的兩個(gè)根.若兩人各射擊5次.甲的方差是.(1)求p1.p2的值,(2)兩人各射擊2次.中靶至少3次就算完成目標(biāo).則完成目標(biāo)的概率是多少? 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)甲、乙二名射擊運(yùn)動(dòng)員參加第二十六屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)的預(yù)選賽,他們分別射擊了4次,成績?nèi)缦卤?單位:環(huán)):

5

6

9

10

6

7

8

9

(1)從甲、乙兩人的成績中各隨機(jī)抽取一個(gè),求甲的成績比乙高的概率;

(2)現(xiàn)要從中選派一人參加決賽,你認(rèn)為選派哪位運(yùn)動(dòng)員參加比較合適?請說明理由.

 

 

 

 

查看答案和解析>>

(本小題滿分12分)
甲、乙二名射擊運(yùn)動(dòng)員參加今年深圳舉行的第二十六屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)的預(yù)選賽,他們分別射擊了4次,成績?nèi)缦卤恚▎挝唬涵h(huán)):


5
6
9
10

6
7
8
9
(1)從甲、乙兩人的成績中各隨機(jī)抽取一個(gè),求甲的成績比乙高的概率;
(2)現(xiàn)要從中選派一人參加決賽,你認(rèn)為選派哪位運(yùn)動(dòng)員參加比較合適?請說明理由.

查看答案和解析>>

(本小題滿分12分)

甲、乙二名射擊運(yùn)動(dòng)員參加今年深圳舉行的第二十六屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)的預(yù)選賽,他們分別射擊了4次,成績?nèi)缦卤恚▎挝唬涵h(huán)):

5

6

9

10

6

7

8

9

(1)從甲、乙兩人的成績中各隨機(jī)抽取一個(gè),求甲的成績比乙高的概率;

(2)現(xiàn)要從中選派一人參加決賽,你認(rèn)為選派哪位運(yùn)動(dòng)員參加比較合適?請說明理由.

 

查看答案和解析>>

(本小題滿分12分)

甲、乙二名射擊運(yùn)動(dòng)員參加今年深圳舉行的第二十六屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)的預(yù)選賽,他們分別射擊了4次,成績?nèi)缦卤恚▎挝唬涵h(huán)):

5

6

9

10

6

7

8

9

(1)從甲、乙兩人的成績中各隨機(jī)抽取一個(gè),求甲的成績比乙高的概率;

(2)現(xiàn)要從中選派一人參加決賽,你認(rèn)為選派哪位運(yùn)動(dòng)員參加比較合適?請說明理由.

 

查看答案和解析>>

(本小題滿分12分)

兩個(gè)人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0

的根,若兩人各射擊5次,甲的方差是 .

(1) 求 p1、p2的值;

(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?

(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

1.A 2.D 3.C 4.B 5.B 6.A 7.B 8.C 9.A 10.C 11.C 12.D

13.(1-a) 14.2 15. 16.

17.解:(1)∵p,q共線,

∴(2-2sin A)(1+sin A)=(cos A+sin A)(sin A-cos A),1分

∴sin2A=.2分

∵cos Acos Bcos C>0,∴A為銳角.3分

∴sin A=,∴A=.5分

(2)y=2sin2B+cos=2sin2B+cos6分

=2sin2B+cos(-2B)=1-cos 2B+cos 2B+sin 2B8分

=sin 2B-cos 2B+1=sin(2B-)+1.10分

∵B∈(0,),∴2B-∈(-,).11分

∴當(dāng)2B-=時(shí),即B=時(shí),ymax=2.12分

18.解:(1)由題意可知ξ~B(5,p1),

∴Dξ=5p1(1-p1)=1分

⇒p-p1+=03分

⇒p1=.4分

又?=6,∴p2=.6分

(2)分兩類情況:①共擊中3次概率C()2()6?C()()+C??C()2=.9分

②共擊中4次概率C()2?C()2=.11分

所求概率為+=.12分

19.解:(1)由函數(shù)f(x)=-x4+x3+ax2-2x-2在區(qū)間[-1,1]上是單調(diào)遞減,在區(qū)間[1,2]上單調(diào)遞增,所以x=1取得極小值.1分

∴f′(1)=0,∴-1+2+2a-2=0,3分

∴a=.4分

(2)由(1)知f(x)=-x4+x3+x2-2x-2,

∴f′(x)=-x3+2x2+x-2.5分

令f′(x)=0,得x=-1,x=1,x=2.6分

∴函數(shù)f(x)有極大值f(-1)=-,f(2)=-,極小值f(1)=-.8分

關(guān)于x的方程f(2|x|-1)=m(x≠0)有六個(gè)不同的實(shí)數(shù)解,令2|x|-1=t(t>0),

即關(guān)于t的方程f(t)=m在t∈(0,+∞)上有三個(gè)不同的實(shí)數(shù)解.9分

在t∈(0,+∞)上函數(shù)f(t)的圖象與直線y=m的圖象在t∈(0,+∞)上有三個(gè)不同的交點(diǎn),而f(t)的圖象與f(x)的圖象一致.11分

又f(0)=-2,由數(shù)形結(jié)合可知,-<m<-.12分

20.解:(1)延長CG交AB于N,∵G是△ABC的重心,∴N是AB的中點(diǎn).1分

∵∠ACB=90°,∴CN=AB=6,∴CG=CN=4.2分

作ME∥GC交DC于E,∴∠EMB是異面直線GC與BM所成的角或補(bǔ)角.3分

∵M(jìn)是DG的中點(diǎn),ME=GC=2,

BE===2.4分

過M作MH⊥GC于H,MH⊥平面ABC,∴MH=2,

∴MB2=MH2+HB2=4+4+36-2?2?6?cos 60°=32,

∴cos∠EMB==-.5分

∴異面直線GC與BM所成的角為arccos.6分

(2)++=-(++),

∵G是△ABC的重心,

∴++=3.7分

∴(++)?=-3?.8分

△DGC是等腰直角三角形,DG=CD=4.9分

設(shè)MG=x,則MD=4-x,

∴-3?=-3||||cos 180°=3?x?(4-x)10分

≤3()2=24.11分

∴(++)?的最大值是24.

(當(dāng)且僅當(dāng)M為GD的中點(diǎn)時(shí)取得).12分

(備注:以上各小題都可以通過建立空間直角坐標(biāo)系求解,建議參照給分)

21.解:(1)由|PF1|-|PF2|=2<|F1F2|知,

點(diǎn)P的軌跡S是以F1、F2為焦點(diǎn)的雙曲線右支.1分

由c=2,2a=2,∴b2=3.2分

故軌跡S的方程為x2-=1(x≥1).4分

(2)當(dāng)直線l的斜率存在時(shí),設(shè)直線方程為y=k(x-2),P(x1,y1),Q(x2,y2)與雙曲線方程聯(lián)立消y得(k2-3)x2-4k2x+4k2+3=0.

∴解得k2>3.5分

∵?=(x1-m)(x2-m)+y1y2

=(x1-m)(x2-m)+k2(x1-2)(x2-2)

=(k2+1)x1x2-(2k2+m)(x1+x2)+m2+4k2

=+m2.6分

∵M(jìn)P⊥MQ,∴?=0,

故得3(1-m2)+k2(m2-4m-5)=0對任意的k2>3恒成立,

∴解得m=-1.7分

當(dāng)m=-1時(shí),MP⊥MQ,

當(dāng)直線l的斜率不存在時(shí),由P(2,3),Q(2,-3)及M(-1,0)知結(jié)論也成立.

綜上,當(dāng)m=-1時(shí),MP⊥MQ.8分

(3)由(1)知,存在M(-1,0)使得MP⊥MQ,

∴∠AEP=∠MEF=∠BQF,∴△PAE~△FBE,

∴=.9分

|AE|?|FB|=|AP|?|BQ|=?=|PF2|?|OF2|,

|PF2|=ex1-a=2x1-1,|PF2|=ex2-a=2x2-1,

∴|AE||FB|=(2x1-1)(2x2-1)10分

=[4x1x2-2(x1+x2)+1]=x1x2-+

=-+=+=+>.

當(dāng)斜率不存在時(shí)|AE|?|AF|=,∴λ的最小值為.11分

此時(shí),|PQ|=6,|MF|=3,SPMQ=|MQ|?|PQ|=9.12分

22.解:(1)由An=(an-1),An1=(an1-1),1分

∴an1=(an1-an),即=3,2分

且a1=A1=(a1-1),

得a1=3.3分

∴數(shù)列{an}是以3為首項(xiàng),3為公比的等比數(shù)列.4分

通項(xiàng)公式為an=3n.5分

(2)∵2nln an=2nln 3n=(nln 3)?2n

=2nln 3?2n1=2nln 3(1+1)n16分

=2nln 3(C+C+…+C)7分

=2nln 3(nC+nC+nC+…+nC)8分

=2nln 3(C+2C+…+kC+…nC)9分

=(2ln 3)C+(2ln 3)?2C+…+(2ln 3)?kC+…+(2ln 3)?nC.12分

故存在等差數(shù)列{cn},cn=(2ln 3)?n對一切正整數(shù)n∈N*,c1C+c2C+…+cnC=2nln an都成立.14分

 


同步練習(xí)冊答案