-- (2) 請對照“觀察與思考 中得到的感悟.當(dāng)進行到n次后.請用兩種方法求所取木棒的長度之和.由此.你能得到一個什么等式: . 延伸與拓展:若進行n次后剩下的木棒長為1.則n-1次后剩下的木棒長為2.n-2次后剩下的木棒長為 .--.第一次剩下的木棒長為 .木棒的總長為 .請仿照(2)中的要求.你又可以得到一個什么等式: . 查看更多

 

題目列表(包括答案和解析)

9、妙趣角:輔助線
問題探討實錄片段:
老師:等腰三角形的兩個底角一定相等嗎?
同學(xué)們異口同聲:一定相等!
老師:誰能說說理由?[說著,在圖(1)上用符號分別表示了已知“等腰”的條件和“底角為何相等”的疑問.]
小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過構(gòu)造一對全等三角形來說明∠B=∠C,所畫的這條線段AD,可以稱它為“輔助線”.
小強:“輔助線”,可謂名副其實.
老師:上面大家探討得到:一個三角形中,如果知道兩邊相等,那么可得這兩邊的對角也相等,這可簡述為“等邊對等角”.
小霞:我想也應(yīng)該有“等角對等邊”[說著,畫出了圖(5),其中,AB、AC兩邊上的“”無疑也是在征求說理.]
不一會,爭先恐后的幾位同學(xué)在黑板上畫出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

老師期待的目光顯然是在說:請你通過觀察與思考,對上述3個圖形作一評價…

查看答案和解析>>

妙趣角:輔助線
問題探討實錄片段:
老師:等腰三角形的兩個底角一定相等嗎?
同學(xué)們異口同聲:一定相等!
老師:誰能說說理由?[說著,在圖(1)上用符號分別表示了已知“等腰”的條件和“底角為何相等”的疑問.]
小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過構(gòu)造一對全等三角形來說明∠B=∠C,所畫的這條線段AD,可以稱它為“輔助線”.
小強:“輔助線”,可謂名副其實.
老師:上面大家探討得到:一個三角形中,如果知道兩邊相等,那么可得這兩邊的對角也相等,這可簡述為“等邊對等角”.
小霞:我想也應(yīng)該有“等角對等邊”[說著,畫出了圖(5),其中,AB、AC兩邊上的“”無疑也是在征求說理.]
不一會,爭先恐后的幾位同學(xué)在黑板上畫出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

精英家教網(wǎng)

老師期待的目光顯然是在說:請你通過觀察與思考,對上述3個圖形作一評價…

查看答案和解析>>

妙趣角:輔助線
問題探討實錄片段:
老師:等腰三角形的兩個底角一定相等嗎?
同學(xué)們異口同聲:一定相等!
老師:誰能說說理由?[說著,在圖(1)上用符號分別表示了已知“等腰”的條件和“底角為何相等”的疑問.]
小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過構(gòu)造一對全等三角形來說明∠B=∠C,所畫的這條線段AD,可以稱它為“輔助線”.
小強:“輔助線”,可謂名副其實.
老師:上面大家探討得到:一個三角形中,如果知道兩邊相等,那么可得這兩邊的對角也相等,這可簡述為“等邊對等角”.
小霞:我想也應(yīng)該有“等角對等邊”[說著,畫出了圖(5),其中,AB、AC兩邊上的“”無疑也是在征求說理.]
不一會,爭先恐后的幾位同學(xué)在黑板上畫出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

老師期待的目光顯然是在說:請你通過觀察與思考,對上述3個圖形作一評價…

查看答案和解析>>

觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC
,同理有:
c
sinC
=
a
sinA
,
a
sinA
=
b
sinB
,
所以
a
sinA
=
b
sinB
=
c
sinC

即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.

(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=
60°
60°
;AC=
20
6
20
6
;
(2)自從去年日本政府自主自導(dǎo)“釣魚島國有化”鬧劇以來,我國政府靈活應(yīng)對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,
6
≈2.449

查看答案和解析>>

觀察與思考
(1)比較下列六組中各組的大小關(guān)系,用“<”“>”或“=”填空:
|(+2)+(+3)|
=
=
|+2|+|+3|;|(-2)+(-3)|
=
=
|-2|+|-3|;|(+2)+(-3)|
|+2|+|-3|;
|(-2)+(+3)|
|-2|+|+3|;|(+2)+0|
=
=
|+2|+|0|;|(+2)+0|
=
=
|-2|+0|;
(2)根據(jù)(1)中的大小比較,請你總結(jié)出任意兩個有理數(shù)a、b和的絕對值與其絕對值的和的大小關(guān)系.
如果a、b同號,則|a+b|=|a|+|b|;如果a、b異號,則|a+b|<|a|+|b|;如果a、b中至少有一個為0,則|a+b|=|a|+|b|
如果a、b同號,則|a+b|=|a|+|b|;如果a、b異號,則|a+b|<|a|+|b|;如果a、b中至少有一個為0,則|a+b|=|a|+|b|

查看答案和解析>>


同步練習(xí)冊答案