22.在不透明口袋里裝有白.紅.黃三種顏色的乒乓球,現(xiàn)從中任意 查看更多

 

題目列表(包括答案和解析)

實際問題:
某學校共有18個教學班,每班的學生數(shù)都是40人,為了解學生課余時間上網(wǎng)情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:
為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學模型:在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③)
...
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:
在不透明的口袋中裝有紅、黃、白、藍、綠五種顏色的小球各20分(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是____;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是____;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是____;
模型拓展二:
在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是____;
(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是____;
問題解決:
(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數(shù)學模型;
(2)根據(jù)(1)中建立的數(shù)學模型,求出全校最少需抽取多少名學生。

查看答案和解析>>

17、實際問題:某學校共有18個教學班,每班的學生數(shù)都是40人.為了解學生課余時間上網(wǎng)情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍,綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
6
;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是
46

(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
1+m

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+m(n-1)

問題解決:(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數(shù)學模型;
(2)根據(jù)(1)中建立的數(shù)學模型,求出全校最少需抽取多少名學生?

查看答案和解析>>

(本題滿分10分)

在一個口袋中有n個小球,其中2個是白球,其余為紅球,這些球除顏色外,其余都相同,在看不到球的條件下,從袋中隨機地取出一個球,它是紅球的概率是

  (1)求n的值;

  (2)甲、乙、丙三人玩一個游戲:把這n個球分別標號為1,2,3,…n,三人按先后順序各摸出一個球(不放回),哪個摸出一號球,哪個獲勝.(若不分勝負,再重新摸)請你用畫樹形圖的方法分析:他們各自獲勝的機會與他們摸球的順序是否有關?若有關,請指出第幾個摸球更有利;若無關,請說明理由

 

查看答案和解析>>

(本題滿分10分)
在一個口袋中有n個小球,其中2個是白球,其余為紅球,這些球除顏色外,其余都相同,在看不到球的條件下,從袋中隨機地取出一個球,它是紅球的概率是.
(1)求n的值;
(2)甲、乙、丙三人玩一個游戲:把這n個球分別標號為1,2,3,…n,三人按先后順序各摸出一個球(不放回),哪個摸出一號球,哪個獲勝.(若不分勝負,再重新摸)請你用畫樹形圖的方法分析:他們各自獲勝的機會與他們摸球的順序是否有關?若有關,請指出第幾個摸球更有利;若無關,請說明理由

查看答案和解析>>

(本題滿分10分)

在一個口袋中有n個小球,其中2個是白球,其余為紅球,這些球除顏色外,其余都相同,在看不到球的條件下,從袋中隨機地取出一個球,它是紅球的概率是

  (1)求n的值;

  (2)甲、乙、丙三人玩一個游戲:把這n個球分別標號為1,2,3,…n,三人按先后順序各摸出一個球(不放回),哪個摸出一號球,哪個獲勝.(若不分勝負,再重新摸)請你用畫樹形圖的方法分析:他們各自獲勝的機會與他們摸球的順序是否有關?若有關,請指出第幾個摸球更有利;若無關,請說明理由

 

查看答案和解析>>


同步練習冊答案