23.如圖.等邊三角形ABC的面積為1.將其三邊AC.CB.BA分別延長(zhǎng)到B′.A′.C′.使. 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分)
【小題1】(1)動(dòng)手操作:
如圖①,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若∠ABE=20°,那么的度數(shù)為        。

【小題2】(2)觀察發(fā)現(xiàn)小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由

(3)實(shí)踐與運(yùn)用:
將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大小。

查看答案和解析>>

(本題滿分12分)提出問(wèn)題:如圖,有一塊分布均勻的等腰三角形蛋糕(,且),在蛋糕的邊緣均勻分布著巧克力,小明和小華決定只切一刀將這塊蛋糕平分(要求分得的蛋糕和巧克力質(zhì)量都一樣).

背景介紹:這條分割直線即平分了三角形的面積,又平分了三角形的周長(zhǎng),我們稱這條線為三角  形的“等分積周線”.

嘗試解決:

  (1)小明很快就想到了一條分割直線,而且用尺規(guī)作圖作出.請(qǐng)你幫小明在圖1中畫出這條“等分積周線”,從而平分蛋糕.

 

 

 

 

 

 

 

 

 

(2) 小華覺(jué)得小明的方法很好,所以自己模仿著在圖1中過(guò)點(diǎn)C畫了一條直線CDAB于點(diǎn)D.你覺(jué)得小華會(huì)成功嗎?如能成功,說(shuō)出確定的方法;如不能成功,請(qǐng)說(shuō)明理由.

(3)通過(guò)上面的實(shí)踐,你一定有了更深刻的認(rèn)識(shí).請(qǐng)你解決下面的問(wèn)題:若ABBC=5 cm,AC=6 cm,請(qǐng)你找出△ABC的所有“等分積周線”,并簡(jiǎn)要的說(shuō)明確定的方法.

 

 

 

 

查看答案和解析>>

(本題滿分12分,第(1)小題滿分6分,第(2)小題滿分6分)如圖7,等腰三角形ABC中,AB=AC,AH垂直BC,點(diǎn)E是AH上一點(diǎn),延長(zhǎng)AH至點(diǎn)F,使FH=EH,

(1)求證:四邊形EBFC是菱形;

(2)如果=,求證:

 

查看答案和解析>>

(本題滿分12分)提出問(wèn)題:如圖,有一塊分布均勻的等腰三角形蛋糕(,且),在蛋糕的邊緣均勻分布著巧克力,小明和小華決定只切一刀將這塊蛋糕平分(要求分得的蛋糕和巧克力質(zhì)量都一樣).
背景介紹:這條分割直線即平分了三角形的面積,又平分了三角形的周長(zhǎng),我們稱這條線為三角 形的“等分積周線”.
嘗試解決:
 (1)小明很快就想到了一條分割直線,而且用尺規(guī)作圖作出.請(qǐng)你幫小明在圖1中畫出這條“等分積周線”,從而平分蛋糕.
(2) 小華覺(jué)得小明的方法很好,所以自己模仿著在圖1中過(guò)點(diǎn)C畫了一條直線CDAB于點(diǎn)D.你覺(jué)得小華會(huì)成功嗎?如能成功,說(shuō)出確定的方法;如不能成功,請(qǐng)說(shuō)明理由.
(3)通過(guò)上面的實(shí)踐,你一定有了更深刻的認(rèn)識(shí).請(qǐng)你解決下面的問(wèn)題:若ABBC=5 cm,AC=6 cm,請(qǐng)你找出△ABC的所有“等分積周線”,并簡(jiǎn)要的說(shuō)明確定的方法.

查看答案和解析>>

(本題滿分12分,第(1)小題滿分6分,第(2)小題滿分6分)如圖7,等腰三角形ABC中,AB=AC,AH垂直BC,點(diǎn)E是AH上一點(diǎn),延長(zhǎng)AH至點(diǎn)F,使FH=EH,
(1)求證:四邊形EBFC是菱形;
(2)如果=,求證:

查看答案和解析>>


同步練習(xí)冊(cè)答案