20.如圖.矩形ABCD中.O是AC與BD的交點(diǎn).過(guò)O點(diǎn)的直線EF與AB.CD的延長(zhǎng)線分別交于點(diǎn)E.F.(1)求證:△BOE≌△DOF,(2)連接EC.AF.當(dāng)EF與AC滿足什么條件時(shí).四邊形AECF為菱形.并說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

 (本小題滿分12分)

如圖,在平面直角坐標(biāo)系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G。

1.(1)點(diǎn)C、D的坐標(biāo)分別是C(        ),D(       );

2.(2)求頂點(diǎn)在直線y=上且經(jīng)過(guò)點(diǎn)C、D的拋物

線的解析式;

3.(3)將(2)中的拋物線沿直線y=平移,平移后   

的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E(頂點(diǎn)在y軸右側(cè))。

平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?

若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)

明理由。

 

查看答案和解析>>

(本小題滿分10分)

如圖1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的對(duì)稱中心,MN交AB于F,QM交AD于E.

⑴求證:ME = MF.

⑵如圖2,若將原題中的“正方形”改為“菱形”,其他條件不變,探索線段ME與線段MF的關(guān)系,并加以證明.

⑶如圖3,若將原題中的“正方形”改為“矩形”,且AB = mBC,其他條件不變,探索線段ME與線段MF的關(guān)系,并說(shuō)明理由.

⑷根據(jù)前面的探索和圖4,你能否將本題推廣到一般的平行四邊形情況?若能,寫(xiě)出推廣命題;若不能,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G。

【小題1】(1)點(diǎn)C、D的坐標(biāo)分別是C(       ),D(       );
【小題2】(2)求頂點(diǎn)在直線y=上且經(jīng)過(guò)點(diǎn)C、D的拋物
線的解析式;
【小題3】(3)將(2)中的拋物線沿直線y=平移,平移后   
的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E(頂點(diǎn)在y軸右側(cè))。
平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?
若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)
明理由。

查看答案和解析>>

(本小題滿分10分)
觀察控究,完成證明和填空.
如圖,四邊形ABCD中,點(diǎn)E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn),順次連接E、F、G、H,得到的四邊形EFGH叫中點(diǎn)四邊形.

【小題1】(1)求證:四邊形EFGH是平行四邊形;
【小題2】(2)如圖,當(dāng)四邊形ABCD變成等腰梯形時(shí),它的中點(diǎn)四邊形是菱形,請(qǐng)你探究并填空:

當(dāng)四邊形ABCD變成平行四邊形時(shí),它的中點(diǎn)四邊形是__________;
當(dāng)四邊形ABCD變成矩形時(shí),它的中點(diǎn)四邊形是__________;
當(dāng)四邊形ABCD變成菱形時(shí),它的中點(diǎn)四邊形是__________;
當(dāng)四邊形ABCD變成正方形時(shí),它的中點(diǎn)四邊形是__________;
【小題3】(3)根據(jù)以上觀察探究,請(qǐng)你總結(jié)中點(diǎn)四邊形的形狀由原四邊形的什么決定的?

查看答案和解析>>

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G。

(1)點(diǎn)C、D的坐標(biāo)分別是C(       ),D(       );
(2)求頂點(diǎn)在直線y=上且經(jīng)過(guò)點(diǎn)C、D的拋物
線的解析式;
(3)將(2)中的拋物線沿直線y=平移,平移后   
的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E(頂點(diǎn)在y軸右側(cè))。
平移后是否存在這樣的拋物線,使⊿EFG為等腰三角形?
若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)
明理由。

查看答案和解析>>


同步練習(xí)冊(cè)答案