題目列表(包括答案和解析)
如圖l,在四邊形A8CD中,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長(zhǎng),分別與BA、CD的延長(zhǎng)線交于點(diǎn)M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在圖1中,連結(jié)BD,取BD的中點(diǎn)H,連結(jié)HE、HF,根據(jù)三角形中位線定理,可證得HE=HF,從而∠HFE=∠HEF,再利用平行線的性質(zhì),可證得∠BME=∠CNE.)
問(wèn)題一:如圖2,在四邊形ADBC中,AB與CD相交于點(diǎn)O,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF,分別交DC、AB于點(diǎn)M、N,判斷△OMN的形狀,請(qǐng)直接寫(xiě)出結(jié)論.
問(wèn)題二:如圖3,在△ABC中,AC>AB,D點(diǎn)在AC上,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)G, 若∠EFC=600,連結(jié)GD,判斷△AGD的形狀并證明.
如圖,在四邊形A8CD中,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長(zhǎng),分別與BA、CD的延長(zhǎng)線交于點(diǎn)M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在圖中,連結(jié)BD,取BD的中點(diǎn)H,連結(jié)HE、HF,根據(jù)三角形中位線定理,可證得HE=HF,從而∠HFE=∠HEF,再利用平行線的性質(zhì),可證得∠BME=∠CNE.)
問(wèn)題一:如圖,在四邊形ADBC中,AB與CD相交于點(diǎn)O,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF,分別交DC、AB于點(diǎn)M、N,判斷△OMN的形狀,請(qǐng)直接寫(xiě)出結(jié)論.
問(wèn)題二:如圖,在△ABC中,AC>AB,D點(diǎn)在AC上,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)G,若∠EFC=600,連結(jié)GD,判斷△AGD的形狀并證明.
如圖,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長(zhǎng),分別與BA、CD的延長(zhǎng)線交于點(diǎn)M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在下圖中,連結(jié)BD,取BD的中點(diǎn)H,連結(jié)HE、HF,根據(jù)三角形中位線定理,證明HE=HF,從而∠1=∠2,再利用平行線性質(zhì),可證得∠BME=∠CNE.)
問(wèn)題一:如圖,在四邊形ADBC中,AB與CD相交于點(diǎn)O,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF,分別交DC、AB于點(diǎn)M、N,判斷△OMN的形狀,請(qǐng)直接寫(xiě)出結(jié)論.
問(wèn)題二:如圖,在△ABC中,AC>AB,D點(diǎn)在AC上,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)G,若∠EFC=60°,連結(jié)GD,判斷△AGD的形狀并證明.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com