20.如圖在△ABC中AB=AC.AC邊上的中線BD把△ABC的周長分為12cm和15cm兩部分(上部分為12.下部分為15). 查看更多

 

題目列表(包括答案和解析)

(本題滿分10分)已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)DDEAC,垂足為點(diǎn)E

1.(1)求證:點(diǎn)DAB的中點(diǎn);

2.(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

3.(3)若⊙O的半徑為9,AB=12,求DE的長.

 

查看答案和解析>>

(本題滿分10分)

情境觀察

將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是  ▲   ,∠CAC′=  ▲   °.

 

 

 

 

 

 


問題探究

如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分

別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等

腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為

P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

 

拓展延伸

如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

 

查看答案和解析>>

(本題滿分10分)如圖1,在△ABC中,ABBC=5,AC=6. △ECD是△ABC沿BC方向平移得到的,連接AE.ACBE相交于點(diǎn)O.

(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;

(2)如圖2,P是線段BC上一動(dòng)點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長交線段AE于點(diǎn)Q,QRBD,垂足為點(diǎn)R.

①四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化?

若變化,請說明理由;若不變,求出四邊形PQED的面積;

②當(dāng)線段BP的長為何值時(shí),△PQR與△BOC相似?

 

 

查看答案和解析>>

(本題滿分12分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙OAB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.

1.(1)求證:點(diǎn)E是邊BC的中點(diǎn);(4分)

2.(2)若EC=3,BD=,求⊙O的直徑AC的長度;(4分)

3.(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由. (4分)

 

查看答案和解析>>

(本題滿分12分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙OAB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.

1.(1)求證:點(diǎn)E是邊BC的中點(diǎn);(4分)

2.(2)若EC=3,BD=,求⊙O的直徑AC的長度;(4分)

3.(3)若以點(diǎn)O,DE,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由. (4分)

 

查看答案和解析>>


同步練習(xí)冊答案