第26題圖 查看更多

 

題目列表(包括答案和解析)

如圖26-3-14所示,在矩形ABCD中,AB=6cm,BC=12cm,點P從A點出發(fā),沿AB邊向點B以1cm/s的速度移動,同時,Q點從B點出發(fā),沿BC邊向點C以2cm/s的速度移動.如果P、Q兩點分別到達B、C兩點后就停止移動,解答下列問題:

    (1)運動開始后第幾秒時,△PBQ的面積等于8cm2?

(2)設(shè)運動開始后第t秒時,五邊形APQCD的面積為Scm2,寫出S與t的函數(shù)關(guān)系式,并指出自變量的取值范圍.

查看答案和解析>>

如圖是2013年某月份的月歷:

          星期        一    二     三    四     五    六    日 

                                                             1

                      2     3      4     5      6     7      8

                      9     10     11    12     13    14     15

                      16    17     18    19     20    21     22

                      23    24     25    26     27    28     29

                      30    31

⑴用一個平行四邊形在這張月歷中任意框出四個數(shù),設(shè)左上角第一個數(shù)為x,那么右下角的數(shù)為____________,這四個數(shù)和為_______________(用x的代數(shù)式表示) .

⑵用上題的方法在這張月歷中框出的四個數(shù)之和是否可能等于102?若有可能,請求出這四個數(shù)分別是幾號;若不可能,試說明理由.

查看答案和解析>>

如圖26-3-14所示,在矩形ABCD中,AB=6cm,BC=12cm,點P從A點出發(fā),沿AB邊向點B以1cm/s的速度移動,同時,Q點從B點出發(fā),沿BC邊向點C以2cm/s的速度移動.如果P、Q兩點分別到達B、C兩點后就停止移動,解答下列問題:

    (1)運動開始后第幾秒時,△PBQ的面積等于8cm2?

(2)設(shè)運動開始后第t秒時,五邊形APQCD的面積為Scm2,寫出S與t的函數(shù)關(guān)系式,并指出自變量的取值范圍.

查看答案和解析>>

利用圖形來表示數(shù)量或數(shù)量關(guān)系,也可以利用數(shù)量或數(shù)量關(guān)系來描述圖形特征或圖形之間的關(guān)系,這種思想方法稱為數(shù)形結(jié)合.我們剛學(xué)過的《從面積到乘法公式》就很好地體現(xiàn)了這一思想方法,你能利用數(shù)形結(jié)合的思想解決下列問題嗎?
如圖,一個邊長為1的正方形,依次取正方形的
1
2
1
4
,
1
8
,…
1
2n
,根據(jù)圖示我們可以知道:第一次取走
1
2
后還剩
1
2
,即
1
2
=1-
1
2
;前兩次取走
1
2
+
1
4
后還剩
1
4
,即
1
2
+
1
4
=1-
1
4
;前三次取走
1
2
+
1
4
+
1
8
后還剩
1
8
,即
1
2
+
1
4
+
1
8
=1-
1
8
;…前n次取走后,還剩
1
2n
1
2n
,即
1
2
+
1
4
+
1
8
+…
1
2n
1
2
+
1
4
+
1
8
+…
1
2n
=
1-
1
2n
1-
1
2n

利用上述計算:
(1)
2
3
+
2
9
+
2
27
+…+
2
3n
=
1-
1
3n
1-
1
3n

(2)
1
3
+
2
9
+
4
27
+…+
2n-1
3n
=
1-
2n
3n
1-
2n
3n

(3)2-22-23-24-25-26-…-22011+22012 (本題寫出解題過程)

查看答案和解析>>

利用圖形來表示數(shù)量或數(shù)量關(guān)系,也可以利用數(shù)量或數(shù)量關(guān)系來描述圖形特征或圖形之間的關(guān)系,這種思想方法稱為數(shù)形結(jié)合.我們剛學(xué)過的《從面積到乘法公式》就很好地體現(xiàn)了這一思想方法,你能利用數(shù)形結(jié)合的思想解決下列問題嗎?

如圖,一個邊長為1的正方形,依次取正方形的根據(jù)圖示我們可以知道:第一次取走后還剩,即=1-;前兩次取走+后還剩,即+=1-;前三次取走++后還剩,即++=1-;……前n次取走后,還剩       ,

                      =          .

   利用上述計算:

   (1) =            .

(2) =           .

(3) 2-22-23-24-25-26-…-22011+22012 (本題寫出解題過程)

 

查看答案和解析>>


同步練習(xí)冊答案