題目列表(包括答案和解析)
如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為-1,直線l y=-X-與坐標(biāo)軸分別交于A,C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1) ,⊙B與X軸相切于點(diǎn)M.
(1) 求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);
(2) ⊙B以每秒1個單位長度的速度沿X軸負(fù)方向平移,同時,直線l繞點(diǎn)A順時針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時,直線l也恰好與⊙B第一次相切.問:直線AC繞點(diǎn)A每秒旋轉(zhuǎn)多少度?
(3)如圖2.過A,O,C三點(diǎn)作⊙O1,點(diǎn)E是劣弧上一點(diǎn),連接EC,EA.EO,當(dāng)點(diǎn)E在劣弧上運(yùn)動時(不與A,O兩點(diǎn)重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說明理由.
.
【解析】(1)已知點(diǎn)A,C的坐標(biāo),故可推出OA=OC,最后可得∠CAO=45°.
(2)依題意,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,連接B1O,B1N,則MN=3.連接B1A,B1P可推出∠PAB1=∠NAB1.又因為OA=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O繼而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直線AC繞點(diǎn)A平均每秒30度.
(3)在CE上截取CK=EA,連接OK,證明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可證明
如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為-1,直線l y=-X-與坐標(biāo)軸分別交于A,C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1) ,⊙B與X軸相切于點(diǎn)M.
(1) 求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);
(2) ⊙B以每秒1個單位長度的速度沿X軸負(fù)方向平移,同時,直線l繞點(diǎn)A順時針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時,直線l也恰好與⊙B第一次相切.問:直線AC繞點(diǎn)A每秒旋轉(zhuǎn)多少度?
(3)如圖2.過A,O,C三點(diǎn)作⊙O1 ,點(diǎn)E是劣弧上一點(diǎn),連接EC,EA.EO,當(dāng)點(diǎn)E在劣弧上運(yùn)動時(不與A,O兩點(diǎn)重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說明理由.
.
【解析】(1)已知點(diǎn)A,C的坐標(biāo),故可推出OA=OC,最后可得∠CAO=45°.
(2)依題意,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,連接B1O,B1N,則MN=3.連接B1A,B1P可推出∠PAB1=∠NAB1.又因為OA=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O繼而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直線AC繞點(diǎn)A平均每秒30度.
(3)在CE上截取CK=EA,連接OK,證明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可證明
類比學(xué)習(xí):一動點(diǎn)沿著數(shù)軸向右平移3個單位,再向左平移2個單位,相當(dāng)于向右平移1個單位。用有理數(shù)加法表示為3+(-2)=1。 若坐標(biāo)平面上的點(diǎn)做如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為。
解決問題:
【小題1】計算:{3,1}+{1,-2};
【小題2】動點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點(diǎn)B嗎? 在圖1中畫出四邊形OABC。
【小題3】如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點(diǎn)O. 請用“平移量”加法算式表示它的航行過程。
類比學(xué)習(xí):一動點(diǎn)沿著數(shù)軸向右平移3個單位,再向左平移2個單位,相當(dāng)于向右平移1個單位。用有理數(shù)加法表示為3+(-2)=1。 若坐標(biāo)平面上的點(diǎn)做如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為。
解決問題:
1.計算:{3,1}+{1,-2};
2.動點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點(diǎn)B嗎? 在圖1中畫出四邊形OABC。
3.如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點(diǎn)O. 請用“平移量”加法算式表示它的航行過程。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com