已知兩個等腰直角三角形邊長分別為和.如圖放置在一起.連接. 查看更多

 

題目列表(包括答案和解析)

精英家教網已知兩個等腰直角三角形(△ACB和△BED)的邊長分別為a,b(a<b),如圖放置在一起,連接AD.
(1)求陰影部分(△ABD)的面積;
(2)如果點P正好位于線段CE的中點,連接AP、DP得到△APD,求△APD的面積
(3)請你用所學的知識比較△ABD和△APD的面積大。

查看答案和解析>>

已知兩個等腰直角三角形(△ACB和△BED)的邊長分別為a,b(a<b),如圖放置在一起,連接AD.
(1)求陰影部分(△ABD)的面積;
(2)如果點P正好位于線段CE的中點,連接AP、DP得到△APD,求△APD的面積
(3)請你用所學的知識比較△ABD和△APD的面積大。

查看答案和解析>>

如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉,在旋轉過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關系.
(1)實驗與操作:
如圖②,如果上面三角板的一條直角邊旋轉到CM的位置時,它的斜邊恰好旋轉到CN的位置,請在網格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數量關系,為什么?
(3)拓廣與運用:
如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉,在旋轉過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關系.
(1)實驗與操作:
如圖②,如果上面三角板的一條直角邊旋轉到CM的位置時,它的斜邊恰好旋轉到CN的位置,請在網格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數量關系,為什么?
(3)拓廣與運用:
如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

24、如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>


同步練習冊答案