(2)為何值時.是等腰三角形.并求的周長. 查看更多

 

題目列表(包括答案和解析)

如圖,在等腰三角形ABC中,AB=AC=10cm,∠ABC=300,以BC所在直線為x軸,以BC邊上的高所在的直線為y軸建立平面直角三角形系。

(1)求直線AC的解析式;
(2)有一動點P以1cm/s的速度從點B開始沿x軸向其正方向運動,設(shè)點P的運動為t秒(單位:s)。
①當(dāng)t為何值時,ΔABP是直角三角形;
②現(xiàn)有另一點Q與點P同時從點B開始,以1cm/s的速度從點B開始沿折線BAC運動,當(dāng)點Q到達(dá)點C時,P、Q兩點同時停止運動。試寫出ΔBPQ的面積S關(guān)于t的函數(shù)解析式,并寫出自變量的取值范圍。

查看答案和解析>>

如圖,在等腰三角形ABC中,AB=AC=10cm,∠ABC=300,以BC所在直線為x軸,以BC邊上的高所在的直線為y軸建立平面直角三角形系。

(1)求直線AC的解析式;

(2)有一動點P以1cm/s的速度從點B開始沿x軸向其正方向運動,設(shè)點P的運動為t秒(單位:s)。

①當(dāng)t為何值時,ΔABP是直角三角形;

②現(xiàn)有另一點Q與點P同時從點B開始,以1cm/s的速度從點B開始沿折線BAC運動,當(dāng)點Q到達(dá)點C時,P、Q兩點同時停止運動。試寫出ΔBPQ的面積S關(guān)于t的函數(shù)解析式,并寫出自變量的取值范圍。

 

查看答案和解析>>

如圖,在等腰三角形ABC中,AB=AC=10cm,∠ABC=300,以BC所在直線為x軸,以BC邊上的高所在的直線為y軸建立平面直角三角形系。

(1)求直線AC的解析式;
(2)有一動點P以1cm/s的速度從點B開始沿x軸向其正方向運動,設(shè)點P的運動為t秒(單位:s)。
①當(dāng)t為何值時,ΔABP是直角三角形;
②現(xiàn)有另一點Q與點P同時從點B開始,以1cm/s的速度從點B開始沿折線BAC運動,當(dāng)點Q到達(dá)點C時,P、Q兩點同時停止運動。試寫出ΔBPQ的面積S關(guān)于t的函數(shù)解析式,并寫出自變量的取值范圍。

查看答案和解析>>

如圖,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.點P從點B出發(fā)沿折線段BA-AD-DC以每秒5個單位長的速度向點C勻速運動;點Q從點C出發(fā)沿線段CB方向以每秒3個單位長的速度勻速運動,過點Q向上作射線QK⊥BC,交折線段CD-DA-AB于點E.點P、Q同時開始運動,當(dāng)點P與點C重合時停止運動,點Q也隨之停止.設(shè)點P、Q運動的時間是t秒(t>0).
(1)當(dāng)點P到達(dá)終點C時,求t的值,并指出此時BQ的長;
(2)當(dāng)點P運動到AD上時,t為何值能使PQ∥DC;
(3)設(shè)射線QK掃過梯形ABCD的面積為S,分別求出點E運動到CD、DA上時,S與t的函數(shù)關(guān)系式;(不必精英家教網(wǎng)寫出t的取值范圍)
(4)△PQE能否成為直角三角形?若能,寫出t的取值范圍;若不能,請說明理由.

查看答案和解析>>

如圖,在等腰△ABC中,∠BAC=90°,AB=AC=1,點D是BC邊上的一個動點
(不與B、C重合),在AC上取一點E,使∠ADE=45°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出當(dāng)BD為何值時AE取得最小值?
(3)在AC上是否存在點E,使△ADE是等腰三角形?若存在,求AE的長;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案