題目列表(包括答案和解析)
如圖,探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數(shù)),連接任意兩個(gè)釘子所得到的不同長(zhǎng)度值的線段種數(shù):當(dāng)n=2時(shí),釘子板上所連不同線段的長(zhǎng)度值只有1與,所以不同長(zhǎng)度值的線段只有2種,若用S表示不同長(zhǎng)度值的線段種數(shù),則S=2;那么當(dāng)n=5時(shí), S=_________;對(duì)n×n的釘子板,寫出用n表示S的代數(shù)式S=_____________________。
n=2 n=3 n=4 n=5
第16題圖
如圖,已知反比例函數(shù)y=過點(diǎn)P, P點(diǎn)的坐標(biāo)為(3-m,2m),m是分式方程的解,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.
(1)試判斷四邊形PAOB的形狀,并說明理由.
(2)連結(jié)AB,E為AB上的一點(diǎn),EF⊥BP于點(diǎn)F,G為AE的中點(diǎn),連結(jié)OG、FG,試問FG和OG有何數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論并證明.
(3)若M為反比例函數(shù)y=在第三象限內(nèi)的一動(dòng)點(diǎn),過M作MN⊥x軸于交AB的延長(zhǎng)線于點(diǎn)N,是否存在一點(diǎn)M使得四邊形OMNB為等腰梯形?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
下面是小明對(duì)多項(xiàng)式進(jìn)行因式分解的過程.
解:設(shè).
原式= (第一步)
= (第二步)
= (第三步)
= (第四步)
回答下列問題:
(1)小明從第二步到第三步運(yùn)用了因式分解的 .
A.提取公因式 | B.平方差公式 |
C.兩數(shù)和的完全平方公式 | D.兩數(shù)差的完全平方公式 |
探索規(guī)律:貨物箱按如圖方式堆放(自下而上依次為第1層、第2層、…),受堆放條件限制,堆放時(shí)應(yīng)符合下列條件:每層堆放貨物箱的個(gè)數(shù)與層數(shù)n之間滿足關(guān)系式,為正整數(shù).
例如,當(dāng)時(shí),, 當(dāng)時(shí),,則:
= ,= ;
⑵ 第n層比第(n+1)層多堆放 個(gè)貨物箱.(用含n的代數(shù)式表示)
如圖,已知反比例函數(shù)y=過點(diǎn)P, P點(diǎn)的坐標(biāo)為(3-m,2m),m是分式方程的解,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.
(1)試判斷四邊形PAOB的形狀,并說明理由.
(2)連結(jié)AB,E為AB上的一點(diǎn),EF⊥BP于點(diǎn)F,G為AE的中點(diǎn),連結(jié)OG、FG,試問FG和OG有何數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論并證明.
(3)若M為反比例函數(shù)y=在第三象限內(nèi)的一動(dòng)點(diǎn),過M作MN⊥x軸于交AB的延長(zhǎng)線于點(diǎn)N,是否存在一點(diǎn)M使得四邊形OMNB為等腰梯形?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com