26.如圖.設(shè)△ABC.△DEF是任意兩個不相似的直角三角形.∠A=∠D=90°.現(xiàn)各用一條直線將每個三角形分成兩個三角形.問是否存在這樣的情形:△ABC被分成的兩個三角形分別與△DEF被分成的兩個三角形相似?若能.請設(shè)計出一種分割方案. 查看更多

 

題目列表(包括答案和解析)

定義:如果一個圖形經(jīng)過分割,能分為4個與自身相似的圖形,我們稱它為“能四階自相似分割圖形”.如圖1,任意△ABC取各邊的中點D、E、F,連接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF顯然都與△ABC相似,則任意△ABC是“能四階自相似分割圖形”.
精英家教網(wǎng)
(1)小明發(fā)現(xiàn):任意矩形ABCD(如圖2)也是“能四階自相似分割圖形”.請你利用尺規(guī)作圖作出分割線.(保留作圖痕跡,不要求寫作法)
(2)同組的小華思考后提出:能不能設(shè)計一種方案,將任意△ABC分割成四個與△ABC相似的小三角形,且其中至少有兩個小三角形的相似比不為1?為了研究方便,小華取AB=6,AC=4,BC=5,(如圖3)并成功地設(shè)計出了分法.請你完成小華的分法,并簡單地說明理由.

查看答案和解析>>

定義:如果一個圖形經(jīng)過分割,能分為4個與自身相似的圖形,我們稱它為“能四階自相似分割圖形”.如圖1,任意△ABC取各邊的中點D、E、F,連接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF顯然都與△ABC相似,則任意△ABC是“能四階自相似分割圖形”.
作業(yè)寶
(1)小明發(fā)現(xiàn):任意矩形ABCD(如圖2)也是“能四階自相似分割圖形”.請你利用尺規(guī)作圖作出分割線.(保留作圖痕跡,不要求寫作法)
(2)同組的小華思考后提出:能不能設(shè)計一種方案,將任意△ABC分割成四個與△ABC相似的小三角形,且其中至少有兩個小三角形的相似比不為1?為了研究方便,小華取AB=6,AC=4,BC=5,(如圖3)并成功地設(shè)計出了分法.請你完成小華的分法,并簡單地說明理由.

查看答案和解析>>

定義:如果一個圖形經(jīng)過分割,能分為4個與自身相似的圖形,我們稱它為“能四階自相似分割圖形”.如圖1,任意△ABC取各邊的中點D、E、F,連接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF顯然都與△ABC相似,則任意△ABC是“能四階自相似分割圖形”.

(1)小明發(fā)現(xiàn):任意矩形ABCD(如圖2)也是“能四階自相似分割圖形”.請你利用尺規(guī)作圖作出分割線.(保留作圖痕跡,不要求寫作法)
(2)同組的小華思考后提出:能不能設(shè)計一種方案,將任意△ABC分割成四個與△ABC相似的小三角形,且其中至少有兩個小三角形的相似比不為1?為了研究方便,小華取AB=6,AC=4,BC=5,(如圖3)并成功地設(shè)計出了分法.請你完成小華的分法,并簡單地說明理由.

查看答案和解析>>


同步練習(xí)冊答案