題目列表(包括答案和解析)
(本小題滿分12分)如圖,在直三棱柱ABC―A1B1C1中,∠ACB = 90°. AC = BC = a,
D、E分別為棱AB、BC的中點, M為棱AA1上的點,二面角M―DE―A為30°.
(1)求MA的長;w.w.w.k.s.5.u.c.o.m
(2)求點C到平面MDE的距離。
(本小題滿分12分)某校高2010級數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。
(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m
(2)求其中的甲乙兩人不相鄰的站法有多少種?
(3)求甲不站最左端且乙不站最右端的站法有多少種 ?
(本小題滿分12分)
某廠有一面舊墻長14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費用為a元;②修1米舊墻的費用為元;③拆去1米舊墻,用所得材料建1米新墻的費用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費用最省?(1)、(2)兩種方案哪個更好?
(本小題滿分12分)
已知a,b是正常數(shù), a≠b, x,y(0,+∞).
(1)求證:≥,并指出等號成立的條件;w.w.w.k.s.5.u.c.o.m
(2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時相應(yīng)的x 的值.
(本小題滿分12分)
已知a=(1,2), b=(-2,1),x=a+b,y=-ka+b (kR).
(1)若t=1,且x∥y,求k的值;
(2)若tR +,x?y=5,求證k≥1.
一、選擇題(5分×12=60分)
B B D D C B B D D C A A
二、填空題(4分x 4=16分)
13.80 14.32 15. 16.①③
三、解答題(12分×5+14分=74分)
17.解:(1)2分
……………………4分
∴的最小正周期為 …………………6分
(2)∵成等比數(shù)列 ∴ 又
∴ ……………………………………4分
又∵ ∴ ……………………………………………………10分
……………………………………12分
18.解:(1)設(shè)公差由成等比數(shù)列得 …………………1分
∴即 ∴舍去或 …………………………3分
∴ ………………………………………………4分
∴ ………………………………………………6分
(2) ∵ ………………………………………………7分
∴…① …………8分
…………② …………9分
①-②得:
∴ ………………………………………………12分
19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,
……………………………………………………4分
(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則
………………………………………………12分
20.解:(1)連結(jié) 為正△ …1分
面3分
面面
即點的位置在線段的四等分點且靠近處 ………………………………………6分
(2)過作于,連
由(1)知面(三垂線定理)
∴為二面角的平面角……9分
在中,
在中,
∴二面角的大小為 ………………………………………12分
(說明:若用空間向量解,請參照給分)
21.解:(1) 由得 ……2分
①當(dāng)時,在內(nèi)是增函數(shù),故無最小值………………………3分
②當(dāng)時,
在處取得極小值 ………………………5分
由 解得:≤ ∴≤ …………6分
≥
(2)由(1)知在區(qū)間上均為增函數(shù)
又,故要在內(nèi)為增函數(shù)
≤ ≥
必須: 或 ………………………………………10分
≤ ≤
∴≤或≥ ∴實數(shù)的取值范圍是:…………………12分
22.解:(1)如圖,設(shè)為橢圓的下焦點,連結(jié)
∴ ∵∴…3分
∵ ∴ ………4分
∴的離心率為
…………………………………………………………6分
(2)∵,∴拋物線方程為:設(shè)點則 ∵
∴點處拋物線的切線斜率 ……………………………………………………8分
則切線方程為:……………………………………………………9分
又∵過點 ∴ ∴ ∴
代入橢圓方程得: ……………………………………………………11分
∴≥ ………………13分
當(dāng)且僅當(dāng) 即 上式取等號
∴此時橢圓的方程為: ………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com