題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿(mǎn)足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
1-5 ACADC。 6-10 ACABB 11-12 DA
13. 28 14. 15. -4n+5 ; 16. ①③④
17.(1),,即,
,,, ,
,∴. 5分
18.解法一:證明:連結(jié)OC,
∴. ----------------------------------------------------------------------------------1分
,,
∴ . ------------------------------------------------------2分
在中,
∴即 ------------------3分
面. ----------------------------4分
(II)過(guò)O作,連結(jié)AE,
,
∴AE在平面BCD上的射影為OE.
∴.
∴ . -----------------------------------------7分
在中,,,,
∴.
∴二面角A-BC-D的大小為. ---------------------------------------------------8分
(III)解:設(shè)點(diǎn)O到平面ACD的距離為
,
∴.
在中, ,
.
而,∴.
∴點(diǎn)O到平面ACD的距離為.--------------------------------12分
解法二:(I)同解法一.
(II)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,
則
,
∴. ------------6分
設(shè)平面ABC的法向量,
,,
由.
設(shè)與夾角為,則.
∴二面角A-BC-D的大小為. --------------------8分
(III)解:設(shè)平面ACD的法向量為,又,
. -----------------------------------11分
設(shè)與夾角為,
則 - 設(shè)O 到平面ACD的距離為h,
∵,∴O到平面ACD的距離為. ---------------------12分
19.(Ⅰ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,且,.
故取出的4個(gè)球均為黑球的概率為.…….6分
(Ⅱ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件互斥,
且,.
故取出的4個(gè)球中恰有1個(gè)紅球的概率為...12分
20. 解:(Ⅰ)由已知,當(dāng)時(shí), ……………… 2分
由,得,∴p=…………….4分
∴.……………… 6分
(Ⅱ)由(1)得,. ……………… 7分
2 ; ①
. ② ………9分
②-①得,
==. ………………12分
21.解(I)
(II)
若時(shí),是減函數(shù),則恒成立,得
22.解(I)設(shè)
(3分)
(Ⅱ)(1)當(dāng)直線的斜率不存在時(shí),方程為
…………(4分)
(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,
設(shè),
,得
…………(6分)
…………………8分
………………….9分
注意也可用..........12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com