20.(本題滿分22分.第1小題4分.第2小題6分.第3小題12分)定義:將一個(gè)數(shù)列中部分項(xiàng)按原來(lái)的先后次序排列所成的一個(gè)新數(shù)列稱為原數(shù)列的一個(gè)子數(shù)列. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

在一次數(shù)學(xué)考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設(shè)4名考生選做每一道題的概率均為.

(1)求其中甲、乙兩名學(xué)生選做同一道題的概率;

(2)設(shè)這4名考生中選做第22題的學(xué)生個(gè)數(shù)為,求的概率分布及數(shù)學(xué)期望. 的解析

 

查看答案和解析>>

(本小題滿分12分)

在一次數(shù)學(xué)考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設(shè)4名考生選做這兩題的可能性均為.

(1)求其中甲、乙二名學(xué)生選做同一道題的概率;

(2)設(shè)這4名考生中選做第22題的學(xué)生個(gè)數(shù)為,求的概率分布及數(shù)學(xué)期望.

 

查看答案和解析>>

(本小題滿分12分)
在一次數(shù)學(xué)考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設(shè)4名考生選做每一道題的概率均為.
(1)求其中甲、乙兩名學(xué)生選做同一道題的概率;
(2)設(shè)這4名考生中選做第22題的學(xué)生個(gè)數(shù)為,求的概率分布及數(shù)學(xué)期望. 的解析

查看答案和解析>>

(本小題滿分14分)

在一次數(shù)學(xué)考試中,第21題和第22題為選做題,規(guī)定每位考生必須且只須在其中選做一題.設(shè)每位考生選做每一題的可能性均為

(1)求甲、乙兩名學(xué)生選做同一道題的概率;

(2)設(shè)4名考生中選做第22題的學(xué)生個(gè)數(shù)為,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

選做題(本小題滿分10分,請(qǐng)考生在第22、23、24三題中任選一題作答。如果多做,則按所做的第一題計(jì)分,作答時(shí)請(qǐng)?jiān)诖痤}紙上所選題目的方框內(nèi)打“√”。
22.選修4-1:幾何證明選講。
如圖,是圓的直徑,是弦,的平分線交圓于點(diǎn),,交的延長(zhǎng)線于點(diǎn)于點(diǎn)。
(1)求證:是圓的切線;
(2)若,求的值。

查看答案和解析>>

一、填空題:(5’×11=55’)

題號(hào)

1

2

3

4

5

6

答案

0

(1,2)

2

題號(hào)

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號(hào)

12

13

14

<ol id="aufkw"></ol>

20090116

答案

A

C

B

B

三、解答題:(12’+14’+15’+16’+22’=79’)

16.(理)解:設(shè)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為,故

因?yàn)?sub>,所以

    推出

依題意可知,當(dāng)時(shí),取得最小值.而,

故有,解得

又點(diǎn)在橢圓的長(zhǎng)軸上,即.故實(shí)數(shù)的取值范圍是

17.解:(1)當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),;(不單獨(dú)分析時(shí)的情況不扣分)

當(dāng)時(shí),

(2)由(1)知:當(dāng)時(shí),集合中的元素的個(gè)數(shù)無(wú)限;

當(dāng)時(shí),集合中的元素的個(gè)數(shù)有限,此時(shí)集合為有限集.

因?yàn)?sub>,當(dāng)且僅當(dāng)時(shí)取等號(hào),

所以當(dāng)時(shí),集合的元素個(gè)數(shù)最少.

此時(shí),故集合

18.(本題滿分15分,1小題7分,第2小題8

解:(1)如圖,建立空間直角坐標(biāo)系.不妨設(shè)

依題意,可得點(diǎn)的坐標(biāo),

    于是,,

   由,則異面直線所成角的

大小為

(2)解:連結(jié). 由,

的中點(diǎn),得;

,,得

,因此

由直三棱柱的體積為.可得

所以,四棱錐的體積為

19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

由此可得,

由規(guī)律②可知,,

又當(dāng)時(shí),

所以,,由條件是正整數(shù),故取

    綜上可得,符合條件.

(2) 解法一:由條件,,可得

,

,

,

因?yàn)?sub>,,所以當(dāng)時(shí),,

,即一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

解法二:列表,用計(jì)算器可算得

月份

6

7

8

9

10

11

人數(shù)

383

463

499

482

416

319

故一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

20.解:(1)依條件得: 則無(wú)窮等比數(shù)列各項(xiàng)的和為:

     ;

  (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:

,即    

 則 .

所以,滿足條件的無(wú)窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為,

其通項(xiàng)公式為,.

解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

………… ①

又若,則對(duì)每一

都有………… ②

從①、②得;

因而滿足條件的無(wú)窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無(wú)窮等比子

數(shù)列,通項(xiàng)公式為,

(3)以下給出若干解答供參考,評(píng)分方法參考本小題閱卷說明:

問題一:是否存在數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

,

因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋(gè)分?jǐn)?shù),而等式右邊為兩個(gè)奇數(shù)的乘積,還是一個(gè)奇數(shù)。故等式不可能成立。所以這樣的兩個(gè)子數(shù)列不存在。

【以上解答屬于層級(jí)3,可得設(shè)計(jì)分4分,解答分6分】

問題二:是否存在數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

………… ①

,則①,矛盾;若,則①

,矛盾;故必有,不妨設(shè),則

………… ②

1當(dāng)時(shí),②,等式左邊是偶數(shù),

右邊是奇數(shù),矛盾;

2當(dāng)時(shí),②

,

兩個(gè)等式的左、右端的奇偶性均矛盾;

綜合可得,不存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

【以上解答屬于層級(jí)4,可得設(shè)計(jì)分5分,解答分7分】

問題三:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在滿足條件的原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

,

顯然當(dāng)時(shí),上述等式成立。例如取,得:

第一個(gè)子數(shù)列:,各項(xiàng)和;第二個(gè)子數(shù)列:,

各項(xiàng)和,有,因而存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍。

【以上解答屬層級(jí)3,可得設(shè)計(jì)分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個(gè)層級(jí)評(píng)分】

問題四:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):存在。

問題五:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):不存在.

【以上問題四、問題五等都屬于層級(jí)4的問題設(shè)計(jì),可得設(shè)計(jì)分5分。解答分最高7分】

 


同步練習(xí)冊(cè)答案