16.設(shè)點在橢圓的長軸上.點是橢圓上任意一點.當(dāng)?shù)哪W钚r.點恰好落在橢圓的右頂點.求實數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)設(shè)橢圓C的中心在坐標(biāo)原點O,焦點在x軸上,短軸長為,左焦點到左準(zhǔn)線的距離為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C上有不同兩點PQ,且OPOQ,過P、Q的直線為l,求點O到直線l的距離.

查看答案和解析>>

(本題滿分12分)設(shè)橢圓C的中心在坐標(biāo)原點O,焦點在x軸上,短軸長為,左焦點到左準(zhǔn)線的距離為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C上有不同兩點P、Q,且OPOQ,過P、Q的直線為l,求點O到直線l的距離.

查看答案和解析>>

(本題滿分12分)設(shè)橢圓C的中心在坐標(biāo)原點O,焦點在x軸上,短軸長為,左焦點到左準(zhǔn)線的距離為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C上有不同兩點P、Q,且OPOQ,過P、Q的直線為l,求點O到直線l的距離.

查看答案和解析>>

(本題滿分12分)

已知橢圓的焦點在軸上,中心在原點,離心率,直線和以原點為圓心,橢圓的短半軸為半徑的圓相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左、右頂點分別為、,點是橢圓上異于的任意一點,設(shè)直線、的斜率分別為,證明為定值;

(Ⅲ)設(shè)橢圓方程,、為長軸兩個端點, 為橢圓上異于、的點, 、分別為直線的斜率,利用上面(Ⅱ)的結(jié)論得(        )(只需直接寫出結(jié)果即可,不必寫出推理過程).

查看答案和解析>>

(本小題滿分12分)

有一幅橢圓型彗星軌道圖,長4cm,高,如下圖,

已知O為橢圓中心,A1,A2是長軸兩端點,

 
太陽位于橢圓的左焦點F處.

   (Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,寫出橢圓方程,

并求出當(dāng)彗星運行到太陽正上方時二者在圖上的距離;

   (Ⅱ)直線l垂直于A1A2的延長線于D點,|OD|=4,

設(shè)P是l上異于D點的任意一點,直線A1P,A2P分別

交橢圓于M、N(不同于A1,A2)兩點,問點A2能否

在以MN為直徑的圓上?試說明理由.

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

      20090116

      答案

      A

      C

      B

      B

      三、解答題:(12’+14’+15’+16’+22’=79’)

      16.(理)解:設(shè)為橢圓上的動點,由于橢圓方程為,故

      因為,所以

          推出

      依題意可知,當(dāng)時,取得最小值.而,

      故有,解得

      又點在橢圓的長軸上,即.故實數(shù)的取值范圍是

      17.解:(1)當(dāng)時,;

      當(dāng)時,;

      當(dāng)時,;(不單獨分析時的情況不扣分)

      當(dāng)時,

      (2)由(1)知:當(dāng)時,集合中的元素的個數(shù)無限;

      當(dāng)時,集合中的元素的個數(shù)有限,此時集合為有限集.

      因為,當(dāng)且僅當(dāng)時取等號,

      所以當(dāng)時,集合的元素個數(shù)最少.

      此時,故集合

      18.(本題滿分15分,1小題7分,第2小題8

      解:(1)如圖,建立空間直角坐標(biāo)系.不妨設(shè)

      依題意,可得點的坐標(biāo),

          于是,,

         由,則異面直線所成角的

      大小為

      (2)解:連結(jié). 由,

      的中點,得;

      ,,得

      ,因此

      由直三棱柱的體積為.可得

      所以,四棱錐的體積為

      19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

      由此可得,

      由規(guī)律②可知,,

      ;

      又當(dāng)時,,

      所以,,由條件是正整數(shù),故取

          綜上可得,符合條件.

      (2) 解法一:由條件,,可得

      ,

      ,

      ,

      因為,,所以當(dāng)時,,

      ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

      解法二:列表,用計算器可算得

      月份

      6

      7

      8

      9

      10

      11

      人數(shù)

      383

      463

      499

      482

      416

      319

      故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

      20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

           ;

        (2)解法一:設(shè)此子數(shù)列的首項為,公比為,由條件得:

      ,即    

       則 .

      所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為,

      其通項公式為,.

      解法二:由條件,可設(shè)此子數(shù)列的首項為,公比為

      ………… ①

      又若,則對每一

      都有………… ②

      從①、②得;

      ;

      因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

      數(shù)列,通項公式為,

      (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

      問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

      因為等式左邊或為偶數(shù),或為一個分?jǐn)?shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

      【以上解答屬于層級3,可得設(shè)計分4分,解答分6分】

      問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

      ………… ①

      ,則①,矛盾;若,則①

      ,矛盾;故必有,不妨設(shè),則

      ………… ②

      1當(dāng)時,②,等式左邊是偶數(shù),

      右邊是奇數(shù),矛盾;

      2當(dāng)時,②

      ,

      兩個等式的左、右端的奇偶性均矛盾;

      綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

      【以上解答屬于層級4,可得設(shè)計分5分,解答分7分】

      問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

      ,

      顯然當(dāng)時,上述等式成立。例如取,得:

      第一個子數(shù)列:,各項和;第二個子數(shù)列:,

      各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

      【以上解答屬層級3,可得設(shè)計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

      問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

      問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

      【以上問題四、問題五等都屬于層級4的問題設(shè)計,可得設(shè)計分5分。解答分最高7分】

       


      同步練習(xí)冊答案