例1.A=,B=,C=,求AB,AC 查看更多

 

題目列表(包括答案和解析)

18、a、b、c是△ABC的三邊,求證a2+b2+c2<2(ab+bc+ac).

查看答案和解析>>

A、B、C是球面上三點(diǎn),已知弦(連接球面上兩點(diǎn)的線段)AB=18cm,BC=24cm,AC=30cm,平面ABC與球心的距離恰好為球半徑的一半,求球的表面積和體積.

查看答案和解析>>

A.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
B.已知矩陣A=
.
1-2
3-7
.

(1)求逆矩陣A-1;
(2)若矩陣X滿足AX=
3
1
,試求矩陣X.
C.坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線C1:ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
,(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
D.已知x,y,z均為正數(shù),求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

A、已知:如圖,在△ABC中,∠ABC=90°,O是AB上一點(diǎn),以O(shè)為圓心,OB為半徑的圓與AB交于點(diǎn)E,與AC切于點(diǎn)D,連接DB、DE、OC.若AD=2,AE=1,求CD的長.
B.運(yùn)用旋轉(zhuǎn)矩陣,求直線2x+y-1=0繞原點(diǎn)逆時針旋轉(zhuǎn)45°后所得的直線方程.
C.已知A是曲線ρ=3cosθ上任意一點(diǎn),求點(diǎn)A到直線ρcosθ=1距離的最大值和最小值.
D.證明不等式:
1
1
+
1
1×2
+
1
1×2×3
+L+
1
1×2×3×L×n
<2.

查看答案和解析>>

A、B、C是球面上三點(diǎn),已知弦AB=18 cm,BC=24 cm,AC=30 cm,平面ABC與球心的距離恰好為球半徑的一半,求球的表面積.

查看答案和解析>>


同步練習(xí)冊答案