已知數(shù)列{an}的首項(xiàng)a1=a≠.且an+1=,記bn=a2n-1-,n=1,2,3,-,(1)求a3,a2, (2)判斷數(shù)列{bn}是否為等比數(shù)列.并證明 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列{an}的首項(xiàng)為a,公差為b;等比數(shù)列{bn}的首項(xiàng)為b,公比為a,其中a,b∈N+,
且a1<b1<a2<b2<a3
(1)求a的值;
(2)若對于任意n∈N+,總存在m∈N+,使am+3=bn,求b的值;
(3)在(2)中,記{cn}是所有{an}中滿足am+3=bn,m∈N+的項(xiàng)從小到大依次組成的數(shù)列,又記Sn為{cn}的前n項(xiàng)和,tn和{an}的前n項(xiàng)和,求證:Sn≥Tn(n∈N).

查看答案和解析>>

已知等差數(shù)列{an}的首項(xiàng)為a,公差為b;等比數(shù)列{bn}的首項(xiàng)為b,公比為a,其中a,b∈N+,
且a1<b1<a2<b2<a3
(1)求a的值;
(2)若對于任意n∈N+,總存在m∈N+,使am+3=bn,求b的值;
(3)在(2)中,記{cn}是所有{an}中滿足am+3=bn,m∈N+的項(xiàng)從小到大依次組成的數(shù)列,又記Sn為{cn}的前n項(xiàng)和,tn和{an}的前n項(xiàng)和,求證:Sn≥Tn(n∈N).

查看答案和解析>>

已知等差數(shù)列{an}的首項(xiàng)為a,公差為b;等比數(shù)列{bn}的首項(xiàng)為b,公比為a,其中a,b∈N+
且a1<b1<a2<b2<a3
(1)求a的值;
(2)若對于任意n∈N+,總存在m∈N+,使am+3=bn,求b的值;
(3)在(2)中,記{cn}是所有{an}中滿足am+3=bn,m∈N+的項(xiàng)從小到大依次組成的數(shù)列,又記Sn為{cn}的前n項(xiàng)和,tn和{an}的前n項(xiàng)和,求證:Sn≥Tn(n∈N).

查看答案和解析>>

已知等差數(shù)列{an}的首項(xiàng)為a,公差為b;等比數(shù)列{bn}的首項(xiàng)為b,公比為a,其中a,b∈N+
且a1<b1<a2<b2<a3
(1)求a的值;
(2)若對于任意n∈N+,總存在m∈N+,使am+3=bn,求b的值;
(3)在(2)中,記{cn}是所有{an}中滿足am+3=bn,m∈N+的項(xiàng)從小到大依次組成的數(shù)列,又記Sn為{cn}的前n項(xiàng)和,tn和{an}的前n項(xiàng)和,求證:Sn≥Tn(n∈N).

查看答案和解析>>

已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為a(a∈R)設(shè)數(shù)列的前n項(xiàng)和為Sn,且
1
a1
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及Sn
(Ⅱ)記An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,當(dāng)n≥2時,試比較An與Bn的大小.

查看答案和解析>>


同步練習(xí)冊答案