8.已知整數(shù)的數(shù)列如下:,,, -.則第60個數(shù)對是 A.(3,8) B.(4,7) C.(4,8) D.(5,7) 查看更多

 

題目列表(包括答案和解析)

已知整數(shù)數(shù)對的數(shù)列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,則第60個數(shù)對是

A.(3,8)               B.(4,7)         C.(4,8)                D.(5,7)

查看答案和解析>>

已知整數(shù)數(shù)對的數(shù)列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,則第60個數(shù)對是

A.(3,8)               B.(4,7)         C.(4,8)                D.(5,7)

 

查看答案和解析>>

已知整數(shù)數(shù)對的數(shù)列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,則第60個數(shù)對是

A.(3,8)B.(4,7)C.(4,8)D.(5,7)

查看答案和解析>>

已知各項為正數(shù)的等比數(shù)列{an}(n∈N*)的公比為q(q≠1),有如下真命題:若
n1+n2
2
=p
,則(an1an2)
1
2
=ap
(其中n1、n2、p為正整數(shù)).
(1)若
n1+n2
2
=p+
1
2
,試探究(an1an2)
1
2
與ap、q之間有何等量關系,并給予證明;
(2)對(1)中探究得出的結論進行推廣,寫出一個真命題,并給予證明.

查看答案和解析>>

已知無窮數(shù)列{an}具有如下性質:①a1為正整數(shù);②對于任意的正整數(shù)n,當an為偶數(shù)時,an+1=
a n
2
;當an為奇數(shù)時,an+1=
an+1
2
.在數(shù)列{an}中,若當n≥k時,an=1,當1≤n<k時,an>1(k≥2,k∈N*),則首項a1可取數(shù)值的個數(shù)為
 
(用k表示).

查看答案和解析>>

 

一、選擇題:BCDBA  BBDCB  AC

二、填空題:

13.100   14. 8或-18    15.     16.①②③④ 

三、解答題:

17解:(1)∵   , 且與向量所成角為

∴   ,   ∴  ,            

,∴  ,即。    

(2)由(1)可得:

 ∴  

∵  ,     ∴  ,

∴  ,  ∴  當=1時,A=   

∴AB=2,               則                        

18.解:(1)拿每個球的概率均為,兩球標號的和是3的倍數(shù)有下列4種情況:

(1,2),(1,5),(2,4),(3,6)每種情況的概率為:

所以所求概率為:  

(2)設拿出球的號碼是3的倍數(shù)的為事件A,則,,拿4次至少得2分包括2分和4分兩種情況。

,,     

19.解:(Ⅰ)取BC中點O,連結AO.

為正三角形,

 連結,在正方形中,分別

的中點,

由正方形性質知,

又在正方形中,,

平面

(Ⅱ)設AB1與A1B交于點,在平面1BD中,

,連結,由(Ⅰ)得

為二面角的平面角.

中,由等面積法可求得,

,

所以二面角的大小為

20.解:(1)由可得

兩式相減得

   故{an}是首項為1,公比為3得等比數(shù)列  

.

   (2)設{bn}的公差為d,由得,可得,可得

        故可設

        又由題意可得解得

        ∵等差數(shù)列{bn}的各項為正,∴,∴ 

 ∴

21.解:,  ∴

⑴ 當時,

0

0

極大值

極小值

極小值

化為 ,∴

⑵ 當時,∴

;當,

所以上的增函數(shù)無極小值

⑶ 當時,

0

0

極大值

極小值

極小值(舍去)

綜上                                                 

 

22.解:(1)如圖,建立平面直角坐標系,則D(-1,0)弦EF所在的直線方程為

設橢圓方程為

知:  聯(lián)立方程組  ,

消去x得:

      由題意知:

      由韋達定理知:

消去得:,化簡整理得:   解得:   

   即:橢圓的長軸長的取值范圍為。

(2)若D為橢圓的焦點,則c=1,    由(1)知:  

      橢圓方程為:

 


同步練習冊答案