用導(dǎo)數(shù)法求函數(shù)的最值.與求函數(shù)極值方法類似.加一步與幾個(gè)極值及端點(diǎn)值比較即可.注意取最值時(shí)對(duì)應(yīng)的自變量必須有解.[補(bǔ)充習(xí)題B] 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

(本小題滿分12分)

已知函數(shù);

(1)求;         (2)求的最大值與最小值.

【解析】第一問利用導(dǎo)數(shù)的運(yùn)算法則,冪函數(shù)的導(dǎo)數(shù)公式,可得。

第二問中,利用第一問的導(dǎo)數(shù),令導(dǎo)數(shù)為零,得到

然后結(jié)合導(dǎo)數(shù),函數(shù)的關(guān)系判定函數(shù)的單調(diào)性,求解最值即可。

 

查看答案和解析>>

某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個(gè)A 型零件和1個(gè)B 型零件配套組成.每個(gè)工人每小時(shí)能加工5個(gè)A 型零件或者3個(gè)B 型零件,現(xiàn)在把這些工人分成兩組同時(shí)工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一中型號(hào)的零件.設(shè)加工A 型零件的工人人數(shù)為x名(x∈N*
(1)設(shè)完成A 型零件加工所需時(shí)間為f(x)小時(shí),寫出f(x)的解析式;
(2)為了在最短時(shí)間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取何值?
(本題主要考查函數(shù)最值、不等式、導(dǎo)數(shù)及其應(yīng)用等基礎(chǔ)知識(shí),考查分類與整合的數(shù)學(xué)思想方法,以及運(yùn)算求解和應(yīng)用意識(shí))

查看答案和解析>>


同步練習(xí)冊(cè)答案