這個基底叫單位正交基底.用表示, 查看更多

 

題目列表(包括答案和解析)

設(shè){
i
j
,
k
}是空間向量的一個單位正交基底,
a
=2
i
-4
j
+5
k
,
b
=
i
+2
j
-3
k
,則向量
a
b
的坐標分別為
(2,-4,5)(1,2,-3)
(2,-4,5)(1,2,-3)

查看答案和解析>>

已知F1=
i
+2
j
+3
k
,F2=-2
i
+3
j
-
k
,F3=3
i
-4
j
+5
k
,其中
i
,
j
k
為單位正交基底,若F1,F(xiàn)2,F(xiàn)3共同作用在一個物體上,使物體從點M1(1,-2,1)移到點M2(3,1,2),則合力所作的功為
 

查看答案和解析>>

由空間向量基本定理可知,空間任意向量
p
可由三個不共面的向量
a
,
b
c
唯一確定地表示為
p
=x
a
+y
b
+z
c
,則稱(x,y,z)為基底
a
b
,
c
下的廣義坐標.特別地,當
a
b
,
c
為單位正交基底時,(x,y,z)為直角坐標.設(shè)
i
j
,
k
分別為直角坐標中x,y,z正方向上的單位向量,則空間直角坐標(1,2,3)在基底
i
+
j
i
-
j
,
k
下的廣義坐標為
3
2
,-
1
2
,3
3
2
,-
1
2
,3

查看答案和解析>>

下列說法正確的是( 。

查看答案和解析>>

向量
a
b
是單位正交基底,
c
=x
a
+y
b
,x,y∈R,(
a
+2
b
)•
c
=-4,(2
a
-
b
)•
c
=7,則x+y=
 

查看答案和解析>>


同步練習冊答案