說明2: ,x(-)+y(-)+z(-)=,即: 查看更多

 

題目列表(包括答案和解析)

對于任意的復(fù)數(shù)z=x+yi(x,y∈R),定義運(yùn)算P(z)=x2[cos(yπ)+isin(yπ)].
(1)集合A={ω|ω=P(z),|z|≤1,Rez,Imz均為整數(shù)},試用列舉法寫出集合A;
(2)若z=2+yi(y∈R),P(z)為純虛數(shù),求|z|的最小值;
(3)直線l:y=x-9上是否存在整點(diǎn)(x,y)(坐標(biāo)x,y均為整數(shù)的點(diǎn)),使復(fù)數(shù)z=x+yi經(jīng)運(yùn)算P后,P(z)對應(yīng)的點(diǎn)也在直線l上?若存在,求出所有的點(diǎn);若不存在,請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,動點(diǎn)P的坐標(biāo)(x,y)滿足方程組:
x=(2k+2-k)cosθ
y=(2k-2-k)sinθ

(1)若k為參數(shù),θ(2)為常數(shù)(θ≠
2
,k∈Z
(3)),求P點(diǎn)軌跡的焦點(diǎn)坐標(biāo).
(4)若θ(5)為參數(shù),k為非零常數(shù),則P點(diǎn)軌跡上任意兩點(diǎn)間的距離是否存在最大值,若存在,求出最大值;若不存在,說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,動點(diǎn)P的坐標(biāo)(x,y)滿足方程組:
x=(2k+2-k)cosθ
y=(2k-2-k)sinθ

(1)若k為參數(shù),θ(2)為常數(shù)(θ≠
2
,k∈Z
(3)),求P點(diǎn)軌跡的焦點(diǎn)坐標(biāo).
(4)若θ(5)為參數(shù),k為非零常數(shù),則P點(diǎn)軌跡上任意兩點(diǎn)間的距離是否存在最大值,若存在,求出最大值;若不存在,說明理由.

查看答案和解析>>

對于任意的復(fù)數(shù)z=x+yi(x,y∈R),定義運(yùn)算P(z)=x2[cos(yπ)+isin(yπ)].
(1)集合A={ω|ω=P(z),|z|≤1,Rez,Imz均為整數(shù)},試用列舉法寫出集合A;
(2)若z=2+yi(y∈R),P(z)為純虛數(shù),求|z|的最小值;
(3)直線l:y=x-9上是否存在整點(diǎn)(x,y)(坐標(biāo)x,y均為整數(shù)的點(diǎn)),使復(fù)數(shù)z=x+yi經(jīng)運(yùn)算P后,P(z)對應(yīng)的點(diǎn)也在直線l上?若存在,求出所有的點(diǎn);若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x(a∈R),f′(x)為f(x)的導(dǎo)數(shù).
(1)當(dāng)a=-3時,求y=f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)g(x)=
19
6
x-
1
3
,是否存在實數(shù)a,對于任意的x1∈[-1,1],存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案