題目列表(包括答案和解析)
A、y=tan2x | ||
B、y=|sinx| | ||
C、y=sin(
| ||
D、y=cos(
|
A、若a∥b,則a與b的方向相同或相反 | B、若a∥b,b∥c,則a∥c | C、若兩個(gè)單位向量互相平行,則這兩個(gè)單位向量相等 | D、若a=b,b=c,則a=c |
1 |
a |
A、必要但不充分條件 |
B、充分但不必要條件 |
C、充要條件 |
D、既不充分也不必要條件 |
一、選擇題:每小題5分,共60分.
BABDB DCABD BD
二、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卷相應(yīng)題號(hào)的橫線上.
13.某校有教師200人,男學(xué)生1200人,女學(xué)生1000人,現(xiàn)用分層抽樣的方法從所有老師中抽取一個(gè)容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n的值為:16
14.若△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且acosB+bcosA=csinC,則角C的大小為:
15.若、滿足約束條件的最大值為:2
16.若,且,則實(shí)數(shù)x的取值范圍是:
三、解答題:本大題共6小題,共70分.把答案填在答題卷相應(yīng)題號(hào)的答題區(qū)中.
17.(本小題滿分10分)
如圖,已知,,且,.
(I)試用表示;
(Ⅱ)設(shè)向量和的夾角為,求的值.
解:(I)設(shè),則
,; …………3分
因,,,
所以 解得:
即 . …………5分
(Ⅱ)由(I)知 ,又,
所以 ) ()=,
…………8分
故 . …………10分
18.(本小題滿分10分)
甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分配到四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(Ⅰ)求甲、乙兩人同時(shí)被分配到崗位服務(wù)的概率;
(Ⅱ)求甲、乙兩人被分配到不同崗位服務(wù)的概率.
解:(Ⅰ)記甲、乙兩人同時(shí)被分到崗位服務(wù)為事件,
那么,
即甲、乙兩人同時(shí)被分到崗位服務(wù)的概率是. …………5分
(Ⅱ)設(shè)甲、乙兩人同時(shí)被分到同一崗位服務(wù)為事件,
那么,
故甲、乙兩人被分到不同崗位服務(wù)的概率是. …………10分
19.(本小題滿分12分)
如圖,四面體ABCD中,O是BD的中點(diǎn),AB=AD=,CA=CB=CD=BD=2.
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)求異面直線AB與CD所成角的大。
解:(方法一)
(Ⅰ)連結(jié)OC.∵BO=DO,AB=AD, BC=CD,
∴AO⊥BD,CO⊥BD. …………3分
在△AOC中,由已知得AC=2,AO=1,CO=,
∴AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.
∴AO平面BCD. …………6分
(Ⅱ)分別取AC、BC的中點(diǎn)M、E,連結(jié)OM、ME、OE,則
ME∥AB,OE∥DC.
∴(或其補(bǔ)角)等于異面直線AB與CD所成的角. …………9分
在△OME中,
又 是直角△AOC斜邊AC上的中線,∴
∴
∴異面直線AB與CD所成角的大小為 …………12分
(方法二)
(Ⅰ)同方法一. …………6分
(Ⅱ)由(Ⅰ)知:AO⊥OC,AO⊥BD,CO⊥BD.
以O為原點(diǎn),建立空間直角坐標(biāo)系如圖, …………7分
則A(0,0,1),B(1,0,0),C(0,,0),D(-1,0,0) . …………10分
所以 ,
∴異面直線AB與CD所成角的大小為 …………12分
20.(本小題滿分12分)
數(shù)列滿足,且.
(I)求,并證明數(shù)列是等比數(shù)列;
(II)求.
解:(I),
; …………2分
又,, …………4分
且
所以數(shù)列是以-2為首項(xiàng),3為公比的等比數(shù)列. …………6分
(II)由(I)得, . …………8分
…………10分
…………12分
21.(本小題滿分13分)
已知函數(shù),在任意一點(diǎn)處的切線的斜率為.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若在上的最小值為,求在R上的極大值.
21. 解:(I)因,所以; …………2分
故 , ,,,
, . …………4分
由知在和上是增函數(shù),
由知在(-1,2)上為減函數(shù). …………8分
(II)由(I)知在(-3,-1)上是增函數(shù),在(-1,2)上為減函數(shù),
所以 在上的最小值是或,極大值為. …………10分
而,,,
∴在上的最小值是,∴,. …………12分
,
即所求函數(shù)在R上的極大值為 …………13分
22.(本小題滿分13分)
如圖,傾斜角為的直線經(jīng)過(guò)拋物線的焦點(diǎn)F,且與拋物線交于A、B兩點(diǎn).
(I)求拋物線的焦點(diǎn)F的坐標(biāo)及準(zhǔn)線l的方程;
(II)若為銳角,作線段AB的垂直平分線m交x軸于點(diǎn)P,證明為定值,并求此定值.
解:(I)設(shè)拋物線的標(biāo)準(zhǔn)方程為,則,從而.
因此拋物線焦點(diǎn)F的坐標(biāo)為(2,0),準(zhǔn)線方程為. ……………4分
(II)作AC⊥l,BD⊥l,垂足分別為C、D,
則由拋物線的定義知:|FA|=|AC|,|FB|=|BD|.
記A、B的橫坐標(biāo)分別為xA、xB,則
|FA|=|AC|=
解得; ……………7分
|FB|=|BD|=
解得. ……………9分
記直線m與AB的交點(diǎn)為E,則
,
所以. ……………12分
故. ……………13分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com