題目列表(包括答案和解析)
已知:數(shù)列是由正數(shù)組成的等差數(shù)列,是其前項的和,并且,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求不等式對一切均成立最大實數(shù);
(Ⅲ)對每一個,在與之間插入個,得到新數(shù)列,設(shè)是數(shù)列的前項和,試問是否存在正整數(shù),使?若存在求出的值;若不存在,請說明理由.
若數(shù)列滿足條件:存在正整數(shù),使得對一切都成立,則稱數(shù)列為級等差數(shù)列.
(1)已知數(shù)列為2級等差數(shù)列,且前四項分別為,求的值;
(2)若為常數(shù)),且是級等差數(shù)列,求所有可能值的集合,并求取最小正值時數(shù)列的前3項和;
(3)若既是級等差數(shù)列,也是級等差數(shù)列,證明:是等差數(shù)列.
一、1. 2.3 3. 4.18 5. 6.55 7. 8.0 9.7 10.0或-2
11. 12.
二、13.C 14.B 15.D 16.A
三、17.解:(1);
(2);
(3)表面積S=48.
18.解:(1) ,
(2)
由,得當(dāng)時,取得最小值-2
19.解:(1)
(2)
,①
,②
②-①,整理,得
20.解:(1),設(shè)
則
任取,,
當(dāng)時,單調(diào)遞減;
當(dāng)時,單調(diào)遞增.
由得
的值域為.
(2)設(shè),
則,
所以單調(diào)遞減.
(3)由的值域為:
所以滿足題設(shè)僅需:
解得,.
21.解:(1)
又
(2)應(yīng)用第(1)小題結(jié)論,得取倒數(shù),得
(3)由正弦定理,原題⇔△ABC中,求證:
證明:由(2)的結(jié)論得,且均小于1,
,
(4)如得出:四邊形ABCD中,求證:且證明正確給3分;
如得出:凸n邊形A
且證明正確給4分.
如能應(yīng)用到其它內(nèi)容有創(chuàng)意則給高分.
如得出:為各項為正數(shù)的等差數(shù)列,,求證:
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com