題目列表(包括答案和解析)
已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出兩種魚各只,給每只魚做上不影響其存活的標(biāo)記,然后放回池塘,待完全混合后,再每次從池塘中隨機(jī)的捕出只魚,記錄下其中有記號的魚的數(shù)目,立即放回池塘中。這樣的記錄做了次,并將記錄獲取的數(shù)據(jù)做成以下的莖葉圖。
(Ⅰ)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚數(shù)目的平均數(shù),并估計池塘中的鯉魚和鯽魚的數(shù)量;
(Ⅱ)為了估計池塘中魚的總重量,現(xiàn)從中按照(Ⅰ)的比例對條魚進(jìn)行稱重,據(jù)稱重魚的重量介于(單位:千克)之間,將測量結(jié)果按如下方式分成九組:第一組、第二組;……,第九組。右圖是按上述分組方法得到的頻率分布直方圖的一部分。
①估計池塘中魚的重量在千克以上(含千克)的條數(shù);
②若第二組、第三組、第四組魚的條數(shù)依次成公差為的等差數(shù)列,請將頻率分布直方圖補充完整;
③在②的條件下估計池塘中魚的重量的眾數(shù)、中位數(shù)及估計池塘中魚的總重量;
(Ⅲ)假設(shè)隨機(jī)地從池塘逐只有放回的捕出只魚中出現(xiàn)鯉魚的次數(shù)為,求的數(shù)學(xué)期望。
已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出兩種魚各只,給每只魚做上不影響其存活的標(biāo)記,然后放回池塘,待完全混合后,再每次從池塘中隨機(jī)的捕出只魚,記錄下其中有記號的魚的數(shù)目,立即放回池塘中。這樣的記錄做了次,并將記錄獲取的數(shù)據(jù)做成以下的莖葉圖。
(Ⅰ)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚數(shù)目的平均數(shù),并估計池塘中的鯉魚和鯽魚的數(shù)量;
(Ⅱ)為了估計池塘中魚的總重量,現(xiàn)從中按照(Ⅰ)的比例對條魚進(jìn)行稱重,據(jù)稱重魚的重量介于(單位:千克)之間,將測量結(jié)果按如下方式分成九組:第一組、第二組;……,第九組。右圖是按上述分組方法得到的頻率分布直方圖的一部分。
①估計池塘中魚的重量在千克以上(含千克)的條數(shù);
②若第二組、第三組、第四組魚的條數(shù)依次成公差為的等差數(shù)列,請將頻率分布直方圖補充完整;
③在②的條件下估計池塘中魚的重量的眾數(shù)、中位數(shù)及估計池塘中魚的總重量;
(Ⅲ)假設(shè)隨機(jī)地從池塘逐只有放回的捕出只魚中出現(xiàn)鯉魚的次數(shù)為,求的數(shù)學(xué)期望。
一.選擇題 1-5 6-10 BCDCA DAABC
二.填空題 11. ; 12. 2 ; 13. 2236 ; 14. ;
15.
三、解答題
16.【解】(Ⅰ)由整理得,
即,------2分
∴, -------5分
∵,∴。 -------7分
(Ⅱ)∵,∴最長邊為, --------8分
∵,∴, --------10分
∴為最小邊,由余弦定理得,解得,
∴,即最小邊長為1 --------13分
17.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號的紅鯽魚與中國金魚數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚與中國金魚的數(shù)目相同,設(shè)池塘中兩種魚的總數(shù)是,則有
, ------------4分
即 ,
所以,可估計水庫中的紅鯽魚與中國金魚的數(shù)量均為25000. ------------7分
(Ⅱ)顯然,, -----------9分
其分布列為
0
1
2
3
4
5
---------11分
數(shù)學(xué)期望. -----------13分
18.【解】(Ⅰ)∵,∴,--------2分
要使有極值,則方程有兩個實數(shù)解,
從而△=,∴. ------------4分
(Ⅱ)∵在處取得極值,
∴,
∴. ------------6分
∴,
∵,
∴當(dāng)時,,函數(shù)單調(diào)遞增,
當(dāng)時,,函數(shù)單調(diào)遞減.
∴時,在處取得最大值, ------------10分
∵時,恒成立,
∴,即,
∴或,即的取值范圍是.------------13分
19.【解】法一:(Ⅰ)∵,∴.
∵三棱柱中,平面.
,∴平面.
∵平面,∴,而,則.---------2分
在與中,∴,--------4分
∴.∴.即.
∵,∴平面. --------------6分
(Ⅱ)如圖,設(shè),過作的垂線,垂足為,連,平面,為二面角的平面角. ----------------9分
在中,,,
∴,∴;
在中,,,
∴,
∴.------------11分
∴在中,,.
故銳二面角的余弦值為.
即平面與平面所成的銳二面角的余弦值為. ----------13分
法二:(Ⅰ)∵,∴.
∵三棱柱中平面∴.
∵,∴平面.
以為坐標(biāo)原點,、、所在的直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系.---------------------2分
易求得,,,,,,.-----4分
(Ⅰ),,,
∵,,
∴,,即,.
∵,∴平面. ---------------------6分
(Ⅱ)設(shè)是平面的法向量,由得
取,則是平面的一個法向量. --------------------9分
又是平面的一個法向量, -----------------11分
.
即平面與平面所成的銳二面角的余弦值為.----------13分
20.【解】(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為,
整理得 . ① ---------------------2分
設(shè)是方程①的兩個不同的根,
∴, ② ----------------4分
且,由是線段的中點,得
,∴.
解得,代入②得,的取值范圍是(12,+∞). --------------6分
于是,直線的方程為,即 --------------7分
法2:設(shè),,則有
--------2分
依題意,,∴. ---------------------4分
∵是的中點,
∴,,從而.
又由在橢圓內(nèi),∴,
∴的取值范圍是. ----------------6分
直線的方程為,即. ----------------7分
(Ⅱ)∵垂直平分,∴直線的方程為,即,
代入橢圓方程,整理得. ③ -----------------9分
又設(shè),的中點為,則是方程③的兩根,
∴.-----12分
到直線的距離,故所求的以線段的中點為圓心且與直線相切的圓的方程為:.-----------14分
21.【解】(Ⅰ)由求導(dǎo)得,
∴曲線:在點處的切線方程為,即.
此切線與軸的交點的坐標(biāo)為,
∴點的坐標(biāo)為.即. -------------------2分
∵點的坐標(biāo)為(),在曲線上,所以,
∴曲線:在點處的切線方程為,---4分
令,得點的橫坐標(biāo)為.
∴數(shù)列是以2為首項,2為公比的等比數(shù)列.
∴(). ---------------------6分
(Ⅱ)設(shè)、、,
∵
--------9分==(定值)--------11分
(Ⅲ)設(shè)、、
則=
=
--------13分
,
∵為常數(shù),∴=為定值. -----------14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com