(Ⅱ)若最大邊的邊長(zhǎng)為.且.求最小邊長(zhǎng). 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù))的最小正周期為.求函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)在中,角對(duì)邊分別是,且滿足.若的面積為.求角的大小和邊b的長(zhǎng).

 

查看答案和解析>>

(Ⅰ)已知函數(shù))的最小正周期為.求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)在中,角對(duì)邊分別是,且滿足.若,的面積為.求角的大小和邊b的長(zhǎng).

查看答案和解析>>

(Ⅰ)已知函數(shù))的最小正周期為.求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)在中,角對(duì)邊分別是,且滿足.若的面積為.求角的大小和邊b的長(zhǎng).

查看答案和解析>>

(12分)有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其切割、焊接成一個(gè)長(zhǎng)方體無(wú)蓋容器(切、焊損耗忽略不計(jì))。有人應(yīng)用數(shù)學(xué)知識(shí)作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)全等的小正方形,剩余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高是小正方形的邊長(zhǎng)。

(1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體容器的最大容積;

(2)請(qǐng)你判斷上述方案是否是最佳方案,若不是,請(qǐng)?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長(zhǎng)方體容器的容積。

 

查看答案和解析>>

有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其切割、焊接成一個(gè)長(zhǎng)方體無(wú)蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高是小正方形的邊長(zhǎng).

(1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體容器的最大容積V1;

(2)請(qǐng)你判斷上述方案是否是最佳方案,若不是,請(qǐng)?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長(zhǎng)方體容器的容積V2>V1.

查看答案和解析>>

 

一.選擇題   1-5   6-10   11-12     BCDCA  DADBC  AC

 

二.填空題   13.  ;   14. ;    15.

 16.

 

三、解答題

17.【解】(Ⅰ)由整理得

,------2分

,      -------5分

,∴。                  -------7分

【解】(Ⅱ)∵,∴最長(zhǎng)邊為,              --------8分

,∴,              --------10分

為最小邊,由余弦定理得,解得

,即最小邊長(zhǎng)為1                      --------12分

 

18.【解】(Ⅰ)∵,∴.---2分

,得,

,∴,即,∴,------4分

當(dāng)時(shí),,的單調(diào)遞增區(qū)間為;------5分

當(dāng)時(shí),.------6分

的單調(diào)遞減區(qū)間為.------7分

(Ⅱ)∵時(shí),;------8分

時(shí),;時(shí),,------9分

處取得極大值-7.  ------10分

,解得.------12分                                

 

19.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號(hào)的紅鯽魚(yú)與中國(guó)金魚(yú)數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)目相同,設(shè)池塘中兩種魚(yú)的總數(shù)是,則有

,                                        ------------3分

即   ,

所以,可估計(jì)水庫(kù)中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)量均為25000.      ------------6分

(Ⅱ)從上述對(duì)總體的估計(jì)數(shù)據(jù)獲知,從池塘隨機(jī)捕出1只魚(yú),它是中國(guó)金魚(yú)的概率為.隨機(jī)地從池塘逐只有放回地捕出5只魚(yú),5只魚(yú)都是紅鯽魚(yú)的概率是,所以其中至少有一只中國(guó)金魚(yú)的概率.------12分

20.【解】在中,,,∴

,∴四邊形為正方形.

       ----6分

(Ⅱ)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面.         ------8分

證明如下:

    如圖,取的中點(diǎn),連、、,

、分別為、的中點(diǎn),

平面,平面,

平面.        ------10分

同理可證平面

,

∴平面平面

平面,∴平面.   ------12分

 

21.【解】(Ⅰ)法1:依題意顯然的斜率存在,可設(shè)直線的方程為,

整理得 . ①    ---------------------2分

    設(shè)是方程①的兩個(gè)不同的根,

    ∴,   ②                  ----------------4分

    且,由是線段的中點(diǎn),得

    ,∴

    解得,這個(gè)值滿足②式,

    于是,直線的方程為,即      --------------6分

    法2:設(shè),,則有

          --------2分

    依題意,,∴.            ---------------------4分

的中點(diǎn), ∴,從而

直線的方程為,即.    ----------------6分

(Ⅱ)∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③             ---------------8分

又設(shè),的中點(diǎn)為,則是方程③的兩根,

,.-----10分

到直線的距離,故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:.-----------12分

 

22.【解】(Ⅰ)由求導(dǎo)得,

∴曲線在點(diǎn)處的切線方程為,即

此切線與軸的交點(diǎn)的坐標(biāo)為,

∴點(diǎn)的坐標(biāo)為.即.                -------------------2分

∵點(diǎn)的坐標(biāo)為),在曲線上,所以,

∴曲線在點(diǎn)處的切線方程為---4分

,得點(diǎn)的橫坐標(biāo)為

∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列.

).     ------------------6分

(Ⅱ)∵;,

.---------10分

(Ⅲ)因?yàn)?sub>,所以

所以數(shù)列的前n項(xiàng)和的前n項(xiàng)和為①,

---------12分

 

②,

①―②得

,

所以          ---------14分

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案