A.M=N B.MN C.MN D.M∩N= 查看更多

 

題目列表(包括答案和解析)

集合

[  ]

A.M=N
B.MN
C.MN
D.M∩N=

查看答案和解析>>

集合

[  ]

A.M=N
B.MN
C.MN
D.M∩N=

查看答案和解析>>

設(shè)集合,則
[     ]
A.M=N
B.MN
C.MN
D.MN

查看答案和解析>>

 

A.(幾何證明選講選做題)

如圖,已知AB為圓O的直徑,BC切圓O于點B,AC交圓O于點PE為線段BC的中點.求證:OPPE

B.(矩陣與變換選做題)

已知M,N,設(shè)曲線y=sinx在矩陣MN對應(yīng)的變換作用下得到曲線F,求F的方程.

C.(坐標(biāo)系與參數(shù)方程選做題)

在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點,求線段AB的長.

D.(不等式選做題)

設(shè)x,y均為正數(shù),且xy,求證:2x≥2y+3.

 

查看答案和解析>>

設(shè)集合M =,N =,則 (   )

A.M=N             B.MN            C.MN            D.MN=

 

查看答案和解析>>

一、選擇題:

1C  2.D  3.D  4.C  5. B  6.C   7. C   8.C  9.  A 

1,3,5

二、填空:

13..y=54.8(1+x%)16   14.(0,)  15.   16.

三、解答題:本大題共6小題,共74分,解答時應(yīng)寫出必要的文字說明、證明過程或演算步驟。

17.解(1)

(2)

    1,3,5

    18.解:(1)當(dāng)時.…………2分

    ,連.

    ⊥面,知⊥面.…………3分

    當(dāng)中點時,中點.

    ∵△為正三角形,

    ,∴…………5分

    …………6分

       (2)過,連結(jié),則,

    ∴∠為二面角P―AC―B的平面角,,

    …………8分

        …………10分

    ……12分

    19.解:(1)fx)=-a2x2+c+,……………(1分)

    a,∴∈(0,1,………………………………………(2分)

    x∈(0,1時,[fx)]max=c+,……………………………(3分)

    fx)≤1,則[fx)]max=c+≤1,即c,……………(5分)

    ∴對任意x∈[0,1],總有fx)≤1成立時,可得c.……(6分)

    (2)∵a,∴>0………………………(7分)

    又拋物線開口向下,fx)=0的兩根在[0,內(nèi),…………(8分)

    …………(11分)

     

    所求實數(shù)c的取值范圍為。

    20.解:(1)當(dāng)時,,不成等差數(shù)列!1分)

    當(dāng)時,  ,

    ,  ∴,∴ …………(4分)

    …………………….5分

    (2)………………(6分)

    ……………………(7分)

    ………(8分)

    ,∴……………(10分)

    ,

     ∴的最小值為……………….12分

    21.解:(1)

    ……………………2分

    當(dāng)是增函數(shù)

    當(dāng)是減函數(shù)……………………4分

    ……6分

    (2)因為,所以

    ……………………8分

    所以的圖象在上有公共點,等價于…………10分

    解得…………………12分

    22解:(1)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8

    ∴|PA|+|PF|=8>|AF|

    ∴P點軌跡為以A、F為焦點的橢圓…………………………3分

    設(shè)方程為

    ………………………5分

    (2)假設(shè)存在滿足題意的直線l,其斜率存在,設(shè)為k,設(shè)

     

     

     

     


    同步練習(xí)冊答案