③命題“ 是真命題, ④命題“ 是假命題其中正確的是. A.②④ B.②③ C.③④ D.①②③ 查看更多

 

題目列表(包括答案和解析)

①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
②若P且Q為假命題,則P、Q均為假命題;
③在△ABC中,sinA>sinB的充要條件是A>B;
④不等式的解集為|x|+|x-1|>a的解集為R,則a≤1;
⑤點(x,y)在映射f作用下的象是(2x,lo
g
y
1
2
),則在f的作用下,點(1,-1)的原象是(0,2).
其中真命題的是
 
(寫出所有真命題的編號)

查看答案和解析>>

命題p:(t-1)2≥|a-b|,其中a,b滿足條件:五個數(shù)18,20,22,a,b的平均數(shù)是20,標(biāo)準(zhǔn)差是
2
;
命題q:m≤t≤n,其中m,n滿足條件:點M在橢圓
x2
4
+y2=1
上,定點A(1,0),m、n分別為線段AM長的最小值和最大值.
若命題“p或q”為真且命題“p且q”為假,求實數(shù)t的取值范圍.

查看答案和解析>>

命題p:?α∈R,sin(π-α)=cosα;命題q:函數(shù)y=lg(
x2+1
+x)
為奇函數(shù).
現(xiàn)有如下結(jié)論:
①p是假命題;  ②¬p是真命題;  ③p∧q是假命題;  ④¬p∨q是真命題.
其中結(jié)論說法錯誤的序號為
①②③
①②③

查看答案和解析>>

命題p:{2}∈{1,2,3},q:{2}⊆{1,2,3},則對復(fù)合命題的下述判斷:①pq為真;②pq為假;③pq為真;④pq為假;⑤非p為真;⑥非q為假.其中判斷正確的序號是________.(填上你認(rèn)為正確的所有序號)

查看答案和解析>>

.命題則對復(fù)合命題的下述判斷:①p或q為真;②p或

q為假;③p且q為真;④p且q為假;⑤非p為真;⑥非q為假.其中判斷正確的序號是        (填上你認(rèn)為正確的所有序號).

 

查看答案和解析>>

一、選擇題:

1C2C   3B   4A   5 C  6C.  7D   8C   9.

    <acronym id="hzfky"><pre id="hzfky"></pre></acronym>
    • 20080522

       

      二、填空題:

      13.13   14.   15.       16.②③

      三、解答題:

       17.解:(1) f()=sin(2-)+1-cos2(-)

                = 2[sin2(-)- cos2(-)]+1

               =2sin[2(-)-]+1

               = 2sin(2x-) +1  …………………………………………5分

      ∴ T==π…………………………………………7分

        (2)當(dāng)f(x)取最大值時, sin(2x-)=1,有  2x- =2kπ+ ……………10分

      =kπ+    (kZ) …………………………………………11分

      ∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

       

      18.解:(1) :當(dāng)時,,…………………………………………1分

      當(dāng)時,.

      ……………………………………………………………………………………3分

      是等差數(shù)列,

      ??????????…………………………………………5?分

       (2)解:, .…………………………………………7分

      ,, ……………………………………8分

      ??????????…………………………………………??9分

      .

      ,,即是等比數(shù)列. ………………………11分

      所以數(shù)列的前項和.………………………12分

      19.解(1)∵函數(shù)的圖象的對稱軸為

      要使在區(qū)間上為增函數(shù),

      當(dāng)且僅當(dāng)>0且……………………2分

      =1則=-1,

      =2則=-1,1

      =3則=-1,1,;………………4分

      ∴事件包含基本事件的個數(shù)是1+2+2=5

      ∴所求事件的概率為………………6分

      (2)由(1)知當(dāng)且僅當(dāng)>0時,

      函數(shù)上為增函數(shù),

      依條件可知試驗的全部結(jié)果所構(gòu)成的區(qū)域為

      構(gòu)成所求事件的區(qū)域為三角形部分!8分

      ………………10分

      ∴所求事件的概率為………………12分

      20解:(1):作,連

      的中點,連,

      則有……………………………4分

      …………………………6分

      (2)設(shè)為所求的點,作,連.則………7分

      就是與面所成的角,則.……8分

      設(shè),易得

      ……………………………………10分

      解得………11分

      故線段上存在點,且時,與面角. …………12分

       

      21.解(1)由

          

      過點(2,)的直線方程為,即

         (2)由

      在其定義域(0,+)上單調(diào)遞增。

      只需恒成立

      ①由上恒成立

      ,∴,∴,∴…………………………10分

      綜上k的取值范圍為………………12分

      22.解:(1)由題意橢圓的離心率

      ∴橢圓方程為………………3分

      又點(1,)在橢圓上,∴=1

      ∴橢圓的方程為………………6分

         (2)若直線斜率不存在,顯然不合題意;

      則直線l的斜率存在!7分

      設(shè)直線,直線l和橢交于,

      依題意:………………………………9分

      由韋達(dá)定理可知:………………10分

      從而………………13分

      求得符合

      故所求直線MN的方程為:………………14分

       

       

       

       


      同步練習(xí)冊答案
      <td id="hzfky"></td>

        <dd id="hzfky"></dd>
        <mark id="hzfky"><pre id="hzfky"></pre></mark>