16.設(shè)函數(shù).則方程的解集是 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫(xiě)出y=φ(x)的解析式及值域;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)函數(shù).

(1)若函數(shù)圖像上的點(diǎn)到直線距離的最小值為,求的值;

(2)關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;

(3)對(duì)于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得都成立,則稱(chēng)直線為函數(shù)

“分界線”.設(shè),試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

(12分) 設(shè)函數(shù)),

(1) 將函數(shù)圖象向右平移一個(gè)單位即可得到函數(shù)的圖象,試寫(xiě)出的解析式及值域;

(2) 關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;

(3) 對(duì)于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得都成立,則稱(chēng)直線為函數(shù)的“分界線”.設(shè),,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.

(Ⅰ)將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫(xiě)出y=φ(x)的解析式及值域;

(Ⅱ)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;

(Ⅲ)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、       

二、13.;14.;15.;16.

詳細(xì)參考答案:

1.∵,∴ ,又∵ ,∴ ,選擇B

2.∵,∴ ,選擇D

3.因?yàn)殛幱安糠衷诩?sub>中又在集中,所陰影部分是,選擇A

4.∵的定義域是 ,∴,選擇C

5.∵,∴選擇A

6.由映射的定義:A、B、C不是映射,D是映射.

7.∵上是減函數(shù),∴,即

8.,或,即

9.當(dāng)時(shí),則,由當(dāng)時(shí),得,,又是奇函數(shù),,所以,即

10.∵

    ∴ ,選擇A

11.在A中,由圖像看,直線應(yīng)與軸的截距;在B圖中,經(jīng)過(guò)是錯(cuò)誤的;在D中,經(jīng)過(guò)是錯(cuò)誤的,選擇C

12.根據(jù)奇函數(shù)圖像關(guān)于原點(diǎn)對(duì)稱(chēng),作出函數(shù)圖像,則不等式

 ,或,所以選擇D

13.∵是偶函數(shù),∴,∴的增函數(shù)區(qū)間是

14.∵,且,,∴,則

15.∵在區(qū)間上是奇函數(shù),∴,∴在區(qū)間上的最小值為

16.函數(shù)圖像如圖,方程等價(jià)于,或

17.解:∵,,

,---------6分

,,

,--------------8分

.-------------------12分

18.解:(1)∵,∴ 的對(duì)應(yīng)法則不同,值域也不同,因此是不同的函數(shù);

   (2)∵,∴ 的定義域不同,值域也不同,因此是不同的函數(shù);

   (3)∴ 的定義域相同,對(duì)應(yīng)法則相同,值域也相同,因此是同一的函數(shù).

19.解:∵,∴ ,以下分討論:------------4分

(i)                    若時(shí),則;------------7分

(ii)                  若時(shí),則.--------11分

綜上所述:實(shí)數(shù)的取值范圍是.-------------------12分

20.解:(1)是偶函數(shù).∵ 的定義域是,設(shè)任意,都有,∴是偶函數(shù).-----------5分

 (2)函數(shù)上是增函數(shù).設(shè)任意,,且時(shí),

,

,∴ ,,,

, 即 ,-----------------11分

故函數(shù)上是增函數(shù).----------------------12分

21.解:(1)∵ ,-----------2分

又  ---------①

 ∴    ,

  即  ---------②-----------3分

由①、② 得:,,-----------5分

(2) ,----------6分

  (i)當(dāng)時(shí),函數(shù)的最小值為;-----8分

(ii)當(dāng)時(shí),函數(shù)的最小值為;---10分

(iii)當(dāng)時(shí),函數(shù)的最小值為.------12分

22.解:(1)依題意有:,即……①,(i)當(dāng)時(shí),方程①無(wú)解,∴當(dāng)時(shí),無(wú)迭代不動(dòng)點(diǎn);(ii)當(dāng)時(shí),方程①有無(wú)數(shù)多解,∴當(dāng)時(shí),也無(wú)迭代不動(dòng)點(diǎn);(iii)當(dāng)時(shí),方程①有唯一解有迭代不動(dòng)點(diǎn).-------------6分

(2)設(shè),顯然時(shí),不滿足關(guān)系式,于是,則:

.------8分

……

即:,比較對(duì)應(yīng)的系數(shù):解之:,所以.----------14分.


同步練習(xí)冊(cè)答案