題目列表(包括答案和解析)
已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意的a、b∈R都滿足f(a·b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判斷f(x)的奇偶性,并證明你的結(jié)論;
(3)若Sn表示數(shù)列{bn}的前n項和.試問:是否存在關(guān)于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)·g(n)對于一切不小于2的自然數(shù)n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.
f(2-n) |
n |
1 |
8 |
1 |
2 |
1 |
2 |
2n |
f(2n) |
一、選擇題 CAADD ABDAB CB
二、填空題 . . . .
三、解答題
.
的周期為,最大值為.
令,
得,.
∴的單調(diào)減區(qū)間為.
.事件,表示甲以獲勝;表示乙以獲勝,、互斥,
∴
.
事件,表示甲以獲勝;表示甲以獲勝, 、互斥,
∴
延長、交于,則.
連結(jié),并延長交延長線于,則,,
在中,為中位線,,
又,
∴.
∵中,,
∴.
即,又,,
∴,∴,
∴為平面與平面所成二面角的平面角。
又,
∴所求二面角大小為.
.由,,
知,,同理,.
又,
∴構(gòu)成以為首項,以為公比的等比數(shù)列。
∴,即.
.
.,且的圖象經(jīng)過點和,
∴,為的兩根.
∴
∴
由
解得
∴
要使對,不等式恒成立,
只需即可.
∵,
∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.
又,,
∴,
∴,
解得,即為的取值范圍.
.由題意知,橢圓的焦點,,頂點,,
∴雙曲線中,,.
∴的方程為:.
聯(lián)立,得,
∴
且,
設(shè),,
則,
∴.
又,即,
∴,
即.
∴,
,
由①②得的范圍為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com