.已知圓關(guān)于軸對稱.經(jīng)過點.且被軸分成兩段弧長之比為.則圓的方程為 查看更多

 

題目列表(包括答案和解析)

已知拋物線C:x2=2py(p>0)的焦點F與P(2,-1)關(guān)于直線l:x-y-2=0對稱,中心在坐標(biāo)原點的橢圓經(jīng)過兩點M(1,
7
2
),N(-
2
,
6
2
),且拋物線與橢圓交于兩點A(xA,yA)和B(xB,yB),且xA<xB
(1)求出拋物線方程與橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l′與拋物線相切于點A,試求直線l′與坐標(biāo)軸所圍成的三角形的面積;
(3)若(2)中直線l′與圓x2-2mx+y2+2y+m2-
24
25
=0恒有公共點,試求m的取值范圍.

查看答案和解析>>

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個焦點與A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;
(3)設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

已知拋物線C:x2=2py(p>0)的焦點F與P(2,-1)關(guān)于直線l:x-y-2=0對稱,中心在坐標(biāo)原點的橢圓經(jīng)過兩點M(1,數(shù)學(xué)公式),N(-數(shù)學(xué)公式,數(shù)學(xué)公式),且拋物線與橢圓交于兩點A(xA,yA)和B(xB,yB),且xA<xB
(1)求出拋物線方程與橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l′與拋物線相切于點A,試求直線l′與坐標(biāo)軸所圍成的三角形的面積;
(3)若(2)中直線l′與圓x2-2mx+y2+2y+m2-數(shù)學(xué)公式=0恒有公共點,試求m的取值范圍.

查看答案和解析>>

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點為圓心,1為半徑為圓相切,又知C的一個焦點與A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;
(3)設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(﹣2,0)及AB的中點,求直線 l 在y軸上的截距b的取值范圍.

查看答案和解析>>

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與A關(guān)于直線y=x對稱.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線y=mx+1與雙曲線C的左支交于A,B兩點,另一直線l經(jīng)過M(-2,0)及AB的中點,求直線l在y軸上的截距b的取值范圍;
(Ⅲ)若Q是雙曲線C上的任一點,F(xiàn)1F2為雙曲線C的左,右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

查看答案和解析>>

一、選擇題 CAADD    ABDAB   CB

二、填空題               

三、解答題

     

               

               

               

       的周期為,最大值為

       ,

          得,

         ∴的單調(diào)減區(qū)間為

事件,表示甲以獲勝;表示乙以獲勝,互斥,

    ∴

  

事件,表示甲以獲勝;表示甲以獲勝, 、互斥,

   延長、交于,則

      連結(jié),并延長交延長線于,則,

      在中,為中位線,

      又,

       ∴

      中,,

,又,

,∴,

為平面與平面所成二面角的平面角。

,

∴所求二面角大小為

,,

    知,,同理,

    又,

構(gòu)成以為首項,以為公比的等比數(shù)列。

,即

     

     

     

     

,且的圖象經(jīng)過點,

     ∴,的兩根.

     ∴

   ∴

要使對,不等式恒成立,

只需即可.

,

上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

,

,

解得,即為的取值范圍.

由題意知,橢圓的焦點,,頂點,,

     ∴雙曲線,

     ∴的方程為:

聯(lián)立,得,

,

設(shè),,

,

,即,

,

,

,

由①②得的范圍為

 

 

 

 


同步練習(xí)冊答案