(I)若年銷售量增加的比例為0.4x.為使本年度的年利潤比上年度有所增加.則投入成本增加的比例x應(yīng)在什么范圍內(nèi)? 查看更多

 

題目列表(包括答案和解析)

某汽車生產(chǎn)企業(yè)上年度生產(chǎn)一品牌汽車的投入成本為10萬元/輛,出廠價為13萬元/輛,年銷售量為5000輛。本年度為適應(yīng)市場需求,計劃提高產(chǎn)品檔次,適當增加投入成本,若每輛車投入成本增加的比例為x(0<x<1),則出廠價相應(yīng)提高的比例為0.7x,年銷售量也相應(yīng)增加。已知年利潤=(每輛車的出廠價—每輛車的投入成本)×年銷售量。

   (I)若年銷售量增加的比例為0.4x,為使本年度的年利潤比上年度有所增加,則投入成本增加的比例x應(yīng)在什么范圍內(nèi)?

   (II)年銷售量關(guān)于x的函數(shù)為為何值時,本年度的年利潤最大?最大利潤為多少?

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DABD    BCCA

二、填空題:本大題共4小題,每小題4分,共16分。

13.    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

17.解:(I)………2分

    依題意函數(shù)

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤的萬元;

    本年度每輛車的投入成本為萬元;

    本年度每輛車的出廠價為萬元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤為

   

   (II)本年度的利潤為

   

………………7分

(舍去)。  …………9分

        19.(I)解:取CE中點P,連結(jié)FP、BP,

        ∵F為CD的中點,

        ∴FP//DE,且FP=

        又AB//DE,且AB=

        ∴AB//FP,且AB=FP,

        ∴ABPF為平行四邊形,∴AF//BP!2分

        又∵AF平面BCE,BP平面BCE,

        ∴AF//平面BCE。 …………4分

           (II)∵△ACD為正三角形,∴AF⊥CD。

        ∵AB⊥平面ACD,DE//AB,

        ∴DE⊥平面ACD,又AF平面ACD,

        ∴DE⊥AF。又AF⊥CD,CD∩DE=D,

        ∴AF⊥平面CDE。 …………6分

        又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

        ∴平面BCE⊥平面CDE。 …………8分

           (III)由(II),以F為坐標原點,F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線分別為x,y,z軸(如圖),建立空間直角坐標系F―xyz.設(shè)AC=2,

        則C(0,―1,0),………………9分

         ……10分

        顯然,為平面ACD的法向量。

        設(shè)平面BCE與平面ACD所成銳二面角為

        ,即平面BCE與平面ACD所成銳二面角為45°。…………12分

        20.(I)證明:當,

        , …………3分

        , …………5分

        所以,的等比數(shù)列。 …………6分

           (II)解:由(I)知, …………7分

        可見,若存在滿足條件的正整數(shù)m,則m為偶數(shù)。 …………9分

        21.解:(I)解:由

        知點C的軌跡是過M,N兩點的直線,故點C的軌跡方程是:

           (II)解:假設(shè)存在于D、E兩點,并以線段DE為直徑的圓都過原點。設(shè)

            由題意,直線l的斜率不為零,

            所以,可設(shè)直線l的方程為

            代入 …………7分

           

            此時,以DE為直徑的圓都過原點。 …………10分

            設(shè)弦DE的中點為

           

        22.解:(I)函數(shù)

             …………1分

             …………2分

            當

            列表如下:

        +

        0

        極大值

            綜上所述,當;

            當 …………5分

           (II)若函數(shù)

            當,

            當,故不成立。 …………7分

            當由(I)知,且是極大值,同時也是最大值。

            從而

            故函數(shù) …………10分

           (III)由(II)知,當

           

         

         

         


        同步練習冊答案